Blog

April 21, 2017

Electronic product developers have extraordinarily powerful software design tools at their command, but high-level hardware and software architectures and requirements are often handled more informally. Modern MBE tools can help formalize this part of the process, particularly if they can connect easily to more detailed models as the product design evolves. In this part, we

April 12, 2017

Introduction Over the last fifty years, commercial electronics has shown a number of sustained trends: Greater product functionality, supported by advanced hardware, packaging, and software Greater product portability, requiring increased mechanical and thermal engineering attention Greater product interconnectivity, with expectations of spontaneous organization into networks like the Internet-of-Things One result has been a greater stress

April 1, 2017

Introduction The apocalypse is approaching rapidly, according to a wide variety of media outlets. It is therefore the first responsibility of the systems engineering community to model it correctly. In a technical note published entirely coincidentally on April Fool’s Day, we contribute to that important work. Links to the technical note and downloadable SysML models

March 24, 2017

Part 1 and Part 2 of this blog series have focused on the SysML models of energy systems (and system-of-systems). In this part (Part 3), we will describe the MBE graphs created when the SysML-based architecture model is connected with discipline-specific models such as CAD models, simulation models, PLM models, requirements model of energy system

March 16, 2017

Introduction It is common to say that “Everything is a System” or even “a System-of-Systems”, but the consequences of that are becoming increasingly alarming to the energy industry. In cases from the earthquake-triggered Fukushima disaster to (possible) foreign hacking of the electrical grid, the vulnerabilities of the energy supply to the physical, economic and political

March 2, 2017

Introduction The energy industry faces a variety of difficult issues: Multidisciplinary technology encompassing mechanical, chemical, nuclear, electronic, software and other engineering disciplines Need for balance between technological, economic and environmental factors High priority placed on energy system security and resilience to natural and man-made disruptions Because of these challenges, energy system engineers have been early