Skip to main content

A crucial thread in enabling model-based systems engineering (MBSE) for next-generation complex systems is to analyze system architecture by means of simulations and verify requirements continuously during design and development phases. The general steps in this iterative simulation-based design approach are as follows:

  1. Define system architecture (design model)
  2. Create a simulation model
  3. Run the simulation model
  4. Verify requirements using simulation results
  5. Refine system architecture and repeat

However, this process often becomes challenging because: (1) system architecture is often defined by system engineers and designers who are not simulation experts and may not have the necessary skills to define and execute simulation models, (2) the communication between system architects and simulation experts is often document-based and hence laborious and error-prone.

Syndeia, our platform for MBE/MBSE, addresses these challenges by providing capabilities to (1) generate simulation models from design models using model transformations, (2) maintain a connection between elements in the design model and simulation model, (3) provide services to compare and synchronize design and simulation models bi-directionally as they evolve concurrently, and (4) reverse engineer design models from simulation models for organizations transitioning to MBSE. We are introducing a new series of technical notes where we exemplify the detailed use cases in this approach with SysML for representing system design and Simulink for representing simulation models

In this series we will highlight various capabilities of Syndeia for using for using MATLAB/Simulink with SysML to coordinate the simulation-based design process of a system. In this series we will outline different scenarios for using Syndeia 2.0 to generate, connect, and compare Simulink and SysML models. Part 1 will show how SysML block and activity structures can be used to generate Simulink model reference structures, including both atomic and multi-signal ports. Part 2 will describe how to generate Simulink models from SysML with specific blocks in the Simulink library that are then executed using a MATLAB script. In Part 3 the reverse will be demonstrated; using Simulink model and block structures to generate SysML block and activity structures. In all three use cases, we will also use the connections created during the generation process to compare and identify changes made on either the SysML side or Simulink side.

In this first installment of the series, we explore the use case where SysML block and activity structures are used to generate a skeletal structure of Simulink models either as an internal block structure with part properties, or an activity structure with call behavior actions. This skeletal model structure, with ports and interfaces defined by the System Engineer in SysML and generated into Simulink, can then be used by a domain engineer with Simulink expertise to flesh out the functional design. Meanwhile, persistent connections between SysML elements and Simulink models will have been created by Syndeia, so that later on as changes are made to either side, we can compare across those connections to show what changes have been made and whether the ports and interfaces remain in sync.

SysML IBD, showing internal block structure to be used for generating a skeletal model in Simulink 

SystemIBD

SysML activity diagram, showing structure to be used for generating a skeletal model in Simulink  OverallMissionACT

Syndeia dashboard showing SysML activity to Simulink model transform

SysMLtoSimulink

Simulink model generated from SysML activity model above  OverallMissionSimulink

Syndeia dashboard views showing comparison of SysML activity structure with Simulink model (top), the results with no changes made (middle), and the results after making changes to both sides (bottom)
OverallMissionCompare

The whitepapers will be published successively over the next few months. Watch this blog page for announcements.

Download Technote: Syndeia Simulink Capabilities Part 1 – SysML → Simulink Skeletal Model

Related Posts

Syndeia AI Agents – Part 1

Hello and welcome to a preview of Syndeia AI, a swarm of AI agents that are powered by Syndeia Cloud. These AI agents can take natural language inputs, fetch latest data from your ...
Manas Bajaj

Santa’s Mission 2024 with 8.2 billion landings made possible by Digital Threads (Day 5)

Santa has just returned from his whirlwind journey, and the workshop erupts in cheers. Elves spill into the command center, their faces glowing with joy and pride as they take in ...
Manas Bajaj

SDS Hardware, Software, and Verification Digital Threads go live (Day 4)

The air hums with the sound of high-tech enchantments and the cheerful chatter of elves hard at work. Twinkling fairy lights hang from the rafters, casting a warm, festive glow. ...
Manas Bajaj

3D Sleigh Assembly model coordinated with System Architecture (Day 3)

It is Day 3 and Tony Sparkgear (Chief-Hardware-Elf) had his team of elves are working hard to create a 3D model in NX parametric software to represent the Sleigh Assembly as shown ...
Manas Bajaj

Sleigh Delivery System – Architecture & Digital Thread Dashboard (Day 2)

It is 7 AM and North Pole is bathing in the first light of dawn reflecting from the snow. The Great Hall, ground zero of operations and logistics, is hustling and bustling with ...
Manas Bajaj

North Pole Calls Intercax for Digital Mission Possible (Day 1)

Today, Intercax received a call from Mrs. Claus, the heart and soul of operations and logistics at North Pole. Seven days from the finale and at a time when hope and love cannot ...
Manas Bajaj

SysML v2 and Digital Threads with Syndeia

SysML v2 is the next generation Systems Modeling Language for modeling complex systems that significantly enhances precision, expressiveness, usability, interoperability, and ...
Manas Bajaj

Digital Thread Conference 2024: A Milestone for Digital Engineering

AI for DT & DE | Part 1 – Connecting with OpenAI as a service in Syndeia®

Introduction – AI for Digital Threads and Integrated Digital Engineering Welcome to our new blog series – Artificial Intelligence (AI) for Digital Threads and Integrated Digital ...
Manas Bajaj