Skip to main content

We can do the same thing internally for the system components, for example, in the software operations of the DRE. We can begin to decompose the functions of the voting machine using a SysML activity diagram, as shown in Figure 1. This diagram describes the first part of the test and validation activity before voting starts. Each symbol represents a specific action of the DRE software, with the arrows or flows designating the order in which those actions occur. The vertical rectangular channels or swimlanes identify the structural components of the DRE that carry out the actions inside. As with the logistical model we presented in Part 3, the DRE behavioral description in SysML lets us keep the functional and physical models consistent and helps us navigate between them.

sysml-activity-rhapsody

Figure 1  SysML Activity Diagram - Test and Validate DRE Behavior

We can think of Figure 1 as a detailed step-by-step description similar to the sequence diagram in Part 3, this time of the internal software functioning of the DRE. Of course, the actual software is being developed in other tools. These software development environments typically use a configuration-managed repository such as GitHub to save and manage the actual code. In order to connect the functional description in the architectural model to the actual software, we will use Syndeia. In the Syndeia dashboard (Figure 2), we show the SysML model on the left, expanded to show the functional activities. We show the GitHub repository on the right, exposing the corresponding software files. Connections are made by drag and drop. Syndeia can use those connections, for example, to open the GitHub file directly from the SysML diagram by double-clicking on a SysML element, to view the GitHub file in its web interface. Syndeia can also use the connection to let the system engineer check if a newer version of the software file has been committed.

Figure 2 Sequence Diagram in Rhapsody SysML – first phase of elections operations

Similar capabilities are available on the hardware side. If we decompose the DRE into its structural components in the SysML block definition diagram in Figure 3, each of those components can be connected to electrical or mechanical CAD files containing the detailed design as it is developed. For example, a critical mechanical component of the DRE is a locking compartment containing the flash memory card ports. We don’t want unauthorized users, including voters, to have access to those ports to protect the integrity of the DRE machine. If we want to check on that mechanical design, Syndeia can connect that block to a CAD part in Siemens NX and we can open that directly from the SysML diagram.  We can track what version of the CAD model we are connected to. We can even share and update certain parameters of the design, like component volume, between the CAD and SysML models.

Figure 3 Block Definition Diagram in Rhapsody SysML and LockingCompartment CAD model in Siemens NX

In this manner, the system is designed and specified in a federated set of engineering models. We will use this unambiguous model-based description to facilitate a systematic Failure Mode and Effect Analysis (FMEA) in Part 5 of this series.

Related Posts:


[widget id="email-posts-to-subscribers-2"]

Tags:
Blog

Related Posts

Model-Based Systems Engineering for Autonomous Vehicles, Part 13 – Digital Reports

A key function of Digital Threads is to be able to answer questions about project status in real-time without the overhead of data collection, status reports and meetings. In this ...
Dirk Zwemer

Model-Based Systems Engineering for Autonomous Vehicles, Part 12 – Digital Projects

In this post, we continue our updating of MBSE for autonomous vehicles in light of the current and upcoming capabilities of Syndeia, the digital thread platform from Intercax. As ...
Dirk Zwemer

Model-Based Systems Engineering for Autonomous Vehicles, Part 11 – Digital Threads

In 2018, I published a ten-part blog series applying MBSE to an autonomous vehicle. That series continues to garner views on our website, but the state-of-the-art has advanced ...
Dirk Zwemer

Syndeia AI Multiple Agents, Part 4

Hello and welcome to a new demonstration of Syndeia AI that shows multiple AI agents in action – SysML v2, Teamcenter, Windchill, Jira, Jama Connect, Teamwork Cloud, and a Digital ...
Manas Bajaj

Fast-Track Digital Thread Training

Intercax is excited to launch a new self-paced training series designed to accelerate your journey into Digital Engineering: Building Digital Threads with Syndeia™. The new ...
Dirk Zwemer

Syndeia AI - Jira Agent, Part 3

We have all been there, trying to write complex query expressions or fill out a form with filters and drop downs to find issues in Jira. But now, you can finally talk with your ...
Manas Bajaj

Syndeia AI - SysML 2.0 Agent, Part 2

Greetings and welcome to an overview of the Syndeia AI - SysML 2.0 Agent. Syndeia AI is a collection of AI agents built on Syndeia Cloud. These AI agents are capable of processing ...
Manas Bajaj

Syndeia AI Agents, Part 1

Hello and welcome to a preview of Syndeia AI, a collection of AI agents that are powered by Syndeia Cloud. These AI agents can take natural language inputs, fetch latest data from ...
Manas Bajaj

Santa’s Mission 2024 with 8.2 billion landings made possible by Digital Threads (Day 5)

Santa has just returned from his whirlwind journey, and the workshop erupts in cheers. Elves spill into the command center, their faces glowing with joy and pride as they take in ...
Manas Bajaj