In Part 1, we created a SysML model for an IoT product and the system engineering project for developing the IoT product. This model is represented by the gray blocks in the center of Figure 1.
However, we must recognize that most of the engineering effort takes place in engineering tools like those on the periphery of the figure. Model-Based Engineering (MBE) practice requires us to connect elements in different models to create a single unified model distributed over multiple tools, which we call the Total System Model (TSM).
To build this network of connections, we used Syndeia, the MBE platform from Intercax. Using a simple drag-and-drop interface, Syndeia can create a variety of inter-model connection types, ranging from simple reference links to full model transforms which allow comparison and synchronization of data between tools. For more information on Syndeia features, consult the Syndeia page on this website.
A major benefit of realizing the TSM is being able to trace connections across the graph, both inter-model connections between tools and intra-model connections inside a single tool. In Syndeia 3.0, we introduced some new visualization capabilities. We can view all the inter-model connections in a chord plot, as in Figure 2, where the peripheral nodes in different colors represent Rhapsody, Teamcenter, DOORS NG, Simulink, NX, GitHub, JIRA, Jama and MySQL. A search box lets us look for specific nodes and connections.
However, as the total system model becomes large, new methods to identify critical connections efficiently are required. In particular, we want to be able to explore extended chains of connections, where multiple direct links combine to connect system elements in non-obvious ways. It is such extended connections that can give rise to critical emergent behaviors and vulnerabilities that systems engineers are expected to identify.
The power of modern graph database technologies makes this possible. Using a prototype of Syndeia 3.1, to be released early in 2017, we export the TSM graph to a Neo4j graph database with powerful query tools. Using its query language Cypher, we can ask the graph database a variety of key questions and see the results as a diagram or a text list.
Modern graph database technologies hold out a lot of promise to enable systems engineers to carry out their responsibilities. For further information, visit us at www.intercax.com or contact us at info@intercax.com.
Related articles: