
Copyright 2016 InterCAX LLC 1

75 Fifth Street NW, Suite 312

Atlanta, GA 30308, USA

voice: +1-404-592-6897

web: www.Intercax.com

email: info@Intercax.com

Rose Yntema, Intercax LLC

Technote: Syndeia Simulink Capabilities
Part 2 – SysML → Simulink Executable Model

Introduction .. 1

Generate specific blocks from the Simulink block library ... 2

Execute Simulink model generated from SysML using a script .. 6

Compare Simulink models with their SysML sources ... 8

Summary ... 12

About the Author .. 12

Introduction
A crucial thread in enabling model-based systems engineering (MBSE) for next-generation,

complex systems is to analyze system architecture by means of simulations and verify requirements

continuously during design and development phases. The general steps in this iterative simulation-based

design approach are as follows:

(1) Define system architecture (design model)

(2) Create a simulation model

(3) Run the simulation model

(4) Verify requirements using simulation results

(5) Refine system architecture and repeat

However, this process often becomes challenging because: (1) system architecture is often defined by

system engineers and designers who are not simulation experts and may not have the necessary skills to

define and execute simulation models, (2) the communication between system architects and

simulation experts is often document-based and hence laborious and error-prone.

Syndeia, our platform for MBE/MBSE, addresses these challenges by providing capabilities to (1)

generate simulation models from design models using model transformations, (2) maintain a connection

between elements in the design model and simulation model, (3) provide services to compare and

synchronize design and simulation models bi-directionally as they evolve concurrently, and (4) reverse

engineer design models from simulation models for organizations transitioning to MBSE. This

http://www.intercax.com/
mailto:info@InterCAX.com
http://www.intercax.com/syndeia

Copyright 2016 InterCAX LLC 2

installment continues our series of technical notes where we exemplify the detailed use cases in this

approach, with SysML for representing system design and Simulink for representing simulation models

In this series we highlight various capabilities of Syndeia for using Simulink with SysML to

coordinate the simulation-based design process of a system. Over these three initial installments, we

have begun to outline scenarios for using Syndeia 2.0 to generate, connect, and compare Simulink and

SysML models. Part 1 showed how SysML block and activity structures can be used to generate Simulink

model reference structures, including both atomic and multi-signal ports. Part 2 will describe how to

generate Simulink models from SysML with specific blocks in the Simulink library that are then executed

using a MATLAB script. In Part 3 the reverse will be demonstrated; using Simulink model and block

structures to generate SysML block and activity structures. In all three use cases, we also use the

connections created during the generation process to compare and identify changes made on either the

SysML side or Simulink side.

In this second installment of the series, we will explore the use case where an expert in both

SysML and Simulink can create models in SysML which can be directly translated to Simulink and

immediately executed using a script. Meanwhile, persistent connections between SysML elements and

Simulink models will have been created by Syndeia, as in the first installment, so that later on as changes

are made to either side, we will compare across those connections to show what changes have been

made and whether the ports and interfaces remain in sync.

Generate specific blocks from the Simulink block library
The initial goal of this scenario is to create source models in SysML, which directly translate to

Simulink models and are then executed with a script. This section will detail how an expert in both

SysML and Simulink can create the SysML source model and generate the corresponding Simulink

model, with script-based execution of that model following in the next section.

Creating SysML elements that correspond to Simulink library blocks
First, libraries of SysML activities (example in Figure 1) or blocks (examples in Figure 2) can be

created to represent various blocks from the Simulink library, with properties configured to set their

various relevant parameters1. We apply the Simulink_Library_Block stereotype from the Syndeia profile

to each of these blocks or activities to indicate that these should not be created as model reference

blocks (as shown in the first installment of this series), but that a specific block from the Simulink block

library should be generated with any specified parameter settings. This stereotype can be seen in the

Applied Stereotype property at the bottom of Figure 1. The correct number of input and output

ports/nodes should be created in SysML corresponding to the number of inports and outports of the

block in Simulink, so that the block can be properly connected to other blocks. All Simulink defaults will

apply to these blocks, so activities or blocks with any parameters that need to be set differently should

1
 Block-specific parameters: http://www.mathworks.com/help/simulink/slref/block-specific-parameters.html

Parameters common to all blocks: http://www.mathworks.com/help/simulink/slref/common-block-parameters.html

http://www.mathworks.com/help/simulink/slref/block-specific-parameters.html
http://www.mathworks.com/help/simulink/slref/common-block-parameters.html

Copyright 2016 InterCAX LLC 3

have properties of the activity, or value properties of the block, of type String, with the default value of

the SysML property equal to the value needed to programmatically set that parameter, i.e. for the Add

activity below, the parameter ‘Inputs’ was created with default value ‘++’ to indicate that there are two

inputs that should be added together. If parameters are set that affect the number of inports and/or

outports, we must make sure that this matches the number of input and output ports/nodes. Since each

instance of a Simulink block can be customized and changed like this, we may have multiple

activities/blocks that correspond to the same basic Simulink block. Because of this, the name of the

activity/block will not be used for the Simulink model. Instead a property called “name” of type String

should be added for every element with the Simulink_Library_Block stereotype applied, and the default

value of that property should be exactly the name of the Simulink library block type (as shown in

parentheses in the list of block-specific parameters1), i.e. name = ‘Sum’ for the Add activity or name =

‘BusCreator’ for the BusCreator_1 block.

Figure 1 SysML activity for generating Sum library block in Simulink Figure 2 SysML blocks for generating library blocks

Using Simulink library blocks specific to signal bus models
The BusCreator and BusSelector blocks pictured in Figure 2 above are a special case of library

block, used only in the case where buses are being used (as in scenario 2 of the first installment). The

BusSelector block extracts signals from a bus, and the BusCreator block forms multiple signals into a

bus, often for the purpose of using individual signals with other blocks that don’t take buses as inputs,

such as the activity model shown below in Figure 3 , in which the first signal is selected from Bus_1,

passed through a Sin block, and then recombined into Bus_1 again. Different blocks must be created to

handle different buses, as the block parameters will indicate the signals and/or bus to be created or

selected from. These parameters must match with the bus types being used. For the BusSelector_1

block in Figure 2, the ‘OutputSignals’ parameter is set to ‘signal1,signal2’, which matches the signals in

Copyright 2016 InterCAX LLC 4

Bus_1, the bus definition element that types in1 port. For the BusCreator_1 block, multiple parameters

are set that define the bus properties – ‘Inputs’ = ‘2’ gives the number of signals being used to create

the bus, ‘Bus: Bus_1’ indicates that Bus_1 is the name of the bus to be created, and the ‘NonVirtualBus’

setting indicates how Simulink will see and use the resulting bus in simulations. Note that the input and

output ports of these blocks have the correct types so that the IBD created from them can be correct

and consistent, but as far as Simulink is concerned, the parameters are what is used to define the block.

Figure 3 Activity model using the Simulink_Library_Block stereotype for bus-related blocks and a trigonometry block

Generating the executable Simulink model with native library blocks
As with the skeletal model in the first installment, the top-level activity/block is dragged in the

Syndeia dashboard from SysML Model to a folder in a local file system repository to generate Simulink

models (SysML activity structure  Simulink shown in Figure 4, SysML block structure  Simulink

shown in Figure 5). Model reference blocks are shown with white boxes as before (i.e. ma11 :

Mission_A11_libblock), but this time we can see that the Simulink library blocks described above have

been generated and displayed as black boxes to signify that we can’t expand the structure any further

down. The reason that the s1 : Trigonometry block in Simulink corresponds to the s1 : Sin call behavior

action in SysML is that the name property of the Sin activity was set to ‘Trigonometry’ and then another

property, Operator = ‘sin’, set the trigonometric relationship to be used in Simulink.

Figure 4 SysML activity structure on the left and Simulink model structure generated from SysML on the right

Copyright 2016 InterCAX LLC 5

Figure 5 SysML internal block structure on the left and Simulink model structure generated from SysML on the right

As shown in the first installment, we may open the newly-generated Simulink models from

Syndeia to view and rearrange them in the native MATLAB environment as shown in the figures below.

Figure 6 Mission_A11_libblock.slx (file from Figure 4) Figure 7 PartB1_libblock.slx (file from Figure 5)

 To see the same parameters that were set using properties in SysML, simply double-click that

block, like the s1 block above, whose Function parameter is shown in Figure 8 set to ‘sin’, and where the

drop-down menu here gives the other types of trigonometric functions that could be represented by the

same block just by changing this parameter.

Figure 8 Setting trigonometry block parameter “Function” using the Simulink user interface

Copyright 2016 InterCAX LLC 6

Execute Simulink model generated from SysML using a script
Next, we show how to use a MATLAB script to execute the models generated in the section

above. When Syndeia generates an entire model structure, it uses inports and outports at each level, so

that they can be used modularly, where a model at any given level may be used as a model reference

block in a higher level model, or run as a standalone model. However, inports and outports have some

limitations in MATLAB as far as how some signals may be passed into and out of the top-level model, so

Syndeia has also been designed to generate a wrapper model with “_RUN” appended to the top-level

model’s name, and with FromWorkspace and ToWorkspace blocks connected to the original top-level

model’s inports and outports, respectively, as this model is used as a model reference block in the

“_RUN” model , pictured in Figure 9 and Figure 10.

Figure 9 Wrapper file generated from activity model Figure 10 Wrapper file generated from block model

Seen in Simulink, the wrapper models look like this:

Figure 11 Overall_Mission_libblock_RUN.slx (file from Figure 9) Figure 12 System_libblock_RUN.slx (file from Figure 10)

Using this wrapper model for inputs and outputs, we can write a script (i.e. Run.m) to set up

inputs, run this set of models, and generate plots of inputs and outputs. First, we set the variables for

the inputs and load them into the workspace, which is shown in Figure 13.

Figure 13 Excerpt from Run.m where input signals are set up and loaded into the MATLAB workspace

Copyright 2016 InterCAX LLC 7

Next in the script, we set the solver and maximum step size to be used for each model that was

used as a model reference block, including the top-level model shown at line 30 in Figure 14. In order to

set parameters, each model must be loaded first (line 29). We also set continuous sample times for

inputs to the top-level model (lines 34 and 35) and set any other parameters that need to be set; in this

case we change the settings of our less-than block so that the two inputs can be different data types,

and we also set it to have a continuous sample time (line 38). Then we load the .mat file that contains

bus definitions (line 40) and run a simulation of the model (line 41) using the inputs that have previously

been loaded into the workspace. From the collective output, we extract the various individual outputs

(lines 44-46) and plot the inputs and outputs separately (lines 49-58).

Figure 14 Excerpt from Run.m setting model and block parameters, running the simulation, and creating relevant plots

Figure 15 Input plots (lines 49-53 in Figure 14) Figure 16 Output plots (lines 55-58 in Figure 14)

Copyright 2016 InterCAX LLC 8

The plots in Figure 15 and Figure 16 show first the inputs generated in the script pictured above

and next the outputs generated by running these inputs through the Simulink model.

Compare Simulink models with their SysML sources
Finally, as we did in the first installment, we will utilize the persisted connections to compare

the Simulink models and SysML blocks/activities. First, we will compare some connections before

changing anything to show what happens when the models are in sync. The Comparison Result shown in

Figure 17 verifies in this case that all elements are in sync as they were just created. The different

numbers, names, and types of each set of actions, parameter nodes, and object flows (for activities) or

properties, flow ports, and connectors (for blocks) are shown below the main connection heading, and

the comment column gives further details on the status of each SysML and/or Simulink element.

Figure 17 Compare SysML and Simulink after generating executable Simulink models from SysML activity & block structures

Copyright 2016 InterCAX LLC 9

Next we will make changes on either side and use the Syndeia compare capabilities to show the

differences across each connection. Syndeia is able to catch changes made on one side or the other, or

changes made to both sides simultaneously, including:

 SysML side changes

o Addition/removal of part properties in a block OR call behavior actions in an activity

o Changing name/type of part properties in a block OR call behavior actions in an activity

o Changing name of block used as part property OR activity used as call behavior action

o Addition/removal of flow ports in a block OR activity parameter nodes in an activity

o Changing name/type of ports in a block OR activity parameter nodes in an activity

o Addition/removal of connectors in a block OR object flows in an activity

o Rewiring of connectors in a block OR object flows in an activity

 Syndeia side changes

o Addition/removal of model reference blocks

o Changing name/type of model reference blocks

o Addition/removal of inports and outports

o Changing name/type of inports and outports

o Changing elements of bus objects typing inports and outports

o Addition/removal of lines (block connections)

o Rewiring of lines

In this note, we will show only a representative subset of these changes on both the SysML and

Simulink side to simulate concurrent modeling efforts. For Overall Mission libblock we add a new

activity mb2 : Mission B libblock to the SysML activity structure (Figure 18), and concurrently delete a

library block logic1 in Simulink (Figure 19). We also rewire the object flows in SysML to the appropriate

pins on the actions, and connect the lines/connectors in Simulink to close the gap. For PartB1_libblock

we delete the p1 part property and all connectors between bs2 and bc2 in SysML (Figure 20), while

concurrently in Simulink we add a new Simulink library block logic2 and rewire the lines to connect it

between the second ports of bs1 and bc2 (Figure 21).

Figure 18 Added new call behavior action mb2 : Misison B libblock & rewired object flows between pins on mbmb2mc

Copyright 2016 InterCAX LLC 10

Figure 19 Deleted Simulink library block logic1 (NOT) and rewired boolean line <signal2> directly between bs1  bc1

Figure 20 Deleted part property p1 and all connectors between bs2  bc2

Figure 21 Added new Simulink library block logic2 (NOT) and rewired line for boolean line <signal2> from bs2  logic2  bc2

Copyright 2016 InterCAX LLC 11

Then, we compare again (results shown in Figure 22).We can see that new queries have been

made to both the SysML and Simulink models as changes were detected, and we can see exactly where

the two models are out of sync, and which side may need to be updated, if any. Again, these are only a

representative sample of the many types of changes which can be made to either side and caught by

Syndeia compare.

Figure 22 Compare SysML and Simulink after making changes shown in Figures 18-21

Copyright 2016 InterCAX LLC 12

Summary
The intent of this second note in our series has been to illustrate the possibilities for using a

SysML model to generate an executable Simulink model with native Simulink library blocks using

Syndeia, so that the resulting model is ready to be executed in the MATLAB/Simulink environment using

an appropriate script. As in the previous installment, we showed that Syndeia also preserves and version

manages connections between Simulink models and SysML blocks or activities, which can then be used

to compare and catch changes that have been made to either side.

To explore the use case where SysML block and activity structures are used to generate a

skeletal structure of Simulink models either as an internal block structure with part properties, or an

activity structure with call behavior actions, see the previous Part 1. The following Part 3 will continue

exploring the Syndeia Simulink interface for the reverse case of generating SysML activity and block

structures from a Simulink model reference structure. Further use cases are in the works for Syndeia 3.0,

so stay tuned for Part 4 and beyond!

If you are interested in trying Syndeia, follow the instructions here to get a free 30-day evaluation

license and download instructions: http://intercax.com/products/syndeia/download/

About the Author
Rose Yntema (rose.yntema@intercax.com) is Applications Engineer for Intercax LLC, Atlanta, GA.

For further information, visit us at www.intercax.com or contact us at info@intercax.com.

http://intercax.com/products/syndeia/download/
mailto:rose.yntema@intercax.com
http://www.intercax.com/
mailto:info@intercax.com

