A 75 Fifth Street NW, Suite 312
p Atlanta, GA 30308, USA
voice: +1-404-592-6897

web: www.lntercax.com

|
I n te r email: info@Intercax.com

Rose Yntema, Intercax LLC

Technote: Syndeia Simulink Capabilities
Part 2 — SysML - Simulink Executable Model

Tald oo [5T Te] o SRR 1
Generate specific blocks from the Simulink block library..........oooiiirci e, 2
Execute Simulink model generated from SysML USING @ SCHPT c...vviiiiiiiiieeiiee e 6
Compare Simulink models With their SYSIMIL SOUICESciiiiiiiriiiiiie et e e e svee e e 8
SUIMIMIAIY i e s e s eeeeeeeaeeeeeaeaeaeeeaaaeaaaeaaaaaaaesaeaaeaeesasaaseesseeseeeeneeeeeeeeeeeesenanans 12
Y oY YU o o T U o T OSSR 12
Introduction

A crucial thread in enabling model-based systems engineering (MBSE) for next-generation,
complex systems is to analyze system architecture by means of simulations and verify requirements
continuously during design and development phases. The general steps in this iterative simulation-based
design approach are as follows:

(1) Define system architecture (design model)

(2) Create a simulation model

(3) Run the simulation model

(4) Verify requirements using simulation results

(5) Refine system architecture and repeat
However, this process often becomes challenging because: (1) system architecture is often defined by
system engineers and designers who are not simulation experts and may not have the necessary skills to
define and execute simulation models, (2) the communication between system architects and
simulation experts is often document-based and hence laborious and error-prone.

Syndeia, our platform for MBE/MBSE, addresses these challenges by providing capabilities to (1)
generate simulation models from design models using model transformations, (2) maintain a connection
between elements in the design model and simulation model, (3) provide services to compare and
synchronize design and simulation models bi-directionally as they evolve concurrently, and (4) reverse
engineer design models from simulation models for organizations transitioning to MBSE. This

Copyright 2016 InterCAX LLC 1

http://www.intercax.com/
mailto:info@InterCAX.com
http://www.intercax.com/syndeia

installment continues our series of technical notes where we exemplify the detailed use cases in this
approach, with SysML for representing system design and Simulink for representing simulation models

In this series we highlight various capabilities of Syndeia for using Simulink with SysML to
coordinate the simulation-based design process of a system. Over these three initial installments, we
have begun to outline scenarios for using Syndeia 2.0 to generate, connect, and compare Simulink and
SysML models. Part 1 showed how SysML block and activity structures can be used to generate Simulink
model reference structures, including both atomic and multi-signal ports. Part 2 will describe how to
generate Simulink models from SysML with specific blocks in the Simulink library that are then executed
using a MATLAB script. In Part 3 the reverse will be demonstrated; using Simulink model and block
structures to generate SysML block and activity structures. In all three use cases, we also use the
connections created during the generation process to compare and identify changes made on either the
SysML side or Simulink side.

In this second installment of the series, we will explore the use case where an expert in both
SysML and Simulink can create models in SysML which can be directly translated to Simulink and
immediately executed using a script. Meanwhile, persistent connections between SysML elements and
Simulink models will have been created by Syndeia, as in the first installment, so that later on as changes
are made to either side, we will compare across those connections to show what changes have been
made and whether the ports and interfaces remain in sync.

Generate specific blocks from the Simulink block library

The initial goal of this scenario is to create source models in SysML, which directly translate to
Simulink models and are then executed with a script. This section will detail how an expert in both
SysML and Simulink can create the SysML source model and generate the corresponding Simulink
model, with script-based execution of that model following in the next section.

Creating SysML elements that correspond to Simulink library blocks

First, libraries of SysML activities (example in Figure 1) or blocks (examples in Figure 2) can be
created to represent various blocks from the Simulink library, with properties configured to set their
various relevant parameters'. We apply the Simulink_Library_Block stereotype from the Syndeia profile
to each of these blocks or activities to indicate that these should not be created as model reference
blocks (as shown in the first installment of this series), but that a specific block from the Simulink block
library should be generated with any specified parameter settings. This stereotype can be seen in the
Applied Stereotype property at the bottom of Figure 1. The correct number of input and output
ports/nodes should be created in SysML corresponding to the number of inports and outports of the
block in Simulink, so that the block can be properly connected to other blocks. All Simulink defaults will
apply to these blocks, so activities or blocks with any parameters that need to be set differently should

! Block-specific parameters: http://www.mathworks.com/help/simulink/slref/block-specific-parameters.html
Parameters common to all blocks: http://www.mathworks.com/help/simulink/slref/common-block-parameters.html

Copyright 2016 InterCAX LLC 2

http://www.mathworks.com/help/simulink/slref/block-specific-parameters.html
http://www.mathworks.com/help/simulink/slref/common-block-parameters.html

have properties of the activity, or value properties of the block, of type String, with the default value of
the SysML property equal to the value needed to programmatically set that parameter, i.e. for the Add
activity below, the parameter ‘Inputs’ was created with default value ‘++’ to indicate that there are two
inputs that should be added together. If parameters are set that affect the number of inports and/or
outports, we must make sure that this matches the number of input and output ports/nodes. Since each
instance of a Simulink block can be customized and changed like this, we may have multiple
activities/blocks that correspond to the same basic Simulink block. Because of this, the name of the
activity/block will not be used for the Simulink model. Instead a property called “name” of type String
should be added for every element with the Simulink_Library_Block stereotype applied, and the default
value of that property should be exactly the name of the Simulink library block type (as shown in
parentheses in the list of block-specific parameters®), i.e. name = ‘Sum’ for the Add activity or name =
‘BusCreator’ for the BusCreator_1 block.

Containment (L El-E3 Simulink LibBlocks
B 77 Q % - - Add
B Simulink LibBlocks - Er-E BusCreator_1
=™ N add(inl: Real, outl : Real, in2 : Real) [N AT S O +name : String = BusCreator
----- @ +name : Siring = Sum - +HMonVirtualBus ; String = on
----- & Inputs : String = ++ -1 HoutDataTypeStr : String = Bus: Bus_1
----- &1 inl: Real - +Inputs : String = 2
----- &1 in2 ; Real - B 4outl: ~Bus_1
----- & outl: Real - +n1: Real
""" ® ininl: Real - 1 +n2 : Boolean
..... & outoutl : Real &1 BusCreator_2
----- & inin2 : Real 57 -

FE| n

£5% Zoom Properties | [2) Documentation

Properties 1 B X

B BusCreator_3

EH-E BusSelector_1

Lo +name : String = BusSelector
0 +0utputSignals = signal 1,signal2

B +inl:Bus_1

{Element | Traceability I Allocations |

- - +outl : Real
[z2]s =] B2 B Expert) | S N]]j +out? : Boolean
B Activity - B BusSelector_2
MName Add E E-E Exp
Qualified Name Model Generation: :LibBlock Models: : Activity: :Simulin == Gain
Owner 3 Simulink LibBlocks [Model Generation::LibEloc.. BH-E LessThan
Applied Stereotype <% Simulink_Library_Block [Class] [Syndeia_Profie: = E-E] Mor

Figure 1 SysML activity for generating Sum library block in Simulink Figure 2 SysML blocks for generating library blocks

Using Simulink library blocks specific to signal bus models

The BusCreator and BusSelector blocks pictured in Figure 2 above are a special case of library
block, used only in the case where buses are being used (as in scenario 2 of the first installment). The
BusSelector block extracts signals from a bus, and the BusCreator block forms multiple signals into a
bus, often for the purpose of using individual signals with other blocks that don’t take buses as inputs,
such as the activity model shown below in Figure 3, in which the first signal is selected from Bus_1,
passed through a Sin block, and then recombined into Bus_1 again. Different blocks must be created to
handle different buses, as the block parameters will indicate the signals and/or bus to be created or
selected from. These parameters must match with the bus types being used. For the BusSelector_1

block in Figure 2, the ‘OutputSignals’ parameter is set to ‘signall,signal2’, which matches the signals in

Copyright 2016 InterCAX LLC 3

Bus_1, the bus definition element that types inl port. For the BusCreator_1 block, multiple parameters
are set that define the bus properties — ‘Inputs’ = ‘2’ gives the number of signals being used to create
the bus, ‘Bus: Bus_1’ indicates that Bus_1 is the name of the bus to be created, and the ‘NonVirtualBus’
setting indicates how Simulink will see and use the resulting bus in simulations. Note that the input and
output ports of these blocks have the correct types so that the IBD created from them can be correct
and consistent, but as far as Simulink is concerned, the parameters are what is used to define the block.

{ act [Activity] Mission A11 ibblock[Mission A11 ibblock 1] ; : : : : : : : : : : : f W
ablocks = : : : : : T «Slmullnk_:_lF}:W_BIUCkn ablocks =
attini : Bus_1 B S - oy .. .a....l....i......|a110ut!:Bus_1
. ; [«Simuiink_Library_Blocks " : _ _ . . . “y—{ wSimulink_Library_Blocks | o
bs1 : BusSelector 1 QUET -+ - T D bed : BusCreator 1
: m L, oL

.................

.......................................

Figure 3 Activity model using the Simulink_Library Block stereotype for bus-related blocks and a trigonometry block

Generating the executable Simulink model with native library blocks

As with the skeletal model in the first installment, the top-level activity/block is dragged in the
Syndeia dashboard from SysML Model to a folder in a local file system repository to generate Simulink
models (SysML activity structure = Simulink shown in Figure 4, SysML block structure = Simulink
shown in Figure 5). Model reference blocks are shown with white boxes as before (i.e. mall :
Mission_A11_libblock), but this time we can see that the Simulink library blocks described above have
been generated and displayed as black boxes to signify that we can’t expand the structure any further
down. The reason that the sl : Trigonometry block in Simulink corresponds to the s1 : Sin call behavior
action in SysML is that the name property of the Sin activity was set to ‘Trigonometry’ and then another
property, Operator = ‘sin’, set the trigonometric relationship to be used in Simulink.

P~ SysML Model ‘= Connection Type = Simulink Models
E‘D Actvity *|| @ Rreference - || Mission_A11_libblock. slx -
8- Bus Types - . 7 Mission_A1_libblock
7 Simulink LibBlocks () Function Wrap - %] Mission_a1_libblock. slx
14 Mission A libblock || @ patamap El-a g Mission_A1_libblock
-4, Mission Al libblack =0 w
= @ Model Transform =S

B mall : Mission A1l libblod:

-3 a10ut1 {out) : Bus_1 - JJJ] bs1 : BusSelector

-1 allnd (in) : Bus_1 -] 51 : Trigonometry

1~ [iSSonAiRibboaN @-P] a11in1 (IN) : Bus: Bus_1
[bel @ BusCreator_1 []--E) a110utl (OUT) : Bus: Bus_1
[bsl: BusSelector_1 =3 alilni -»> bsifi

[51 5in = bslf2 -= bcif2

-1 @110utl (out) : Bus_1 -3 311 ->bcifl

-8 @l1In1 (in) : Bus_1 =% bclfl-> all0utl
G-, Mission E libblock = bs1f1-# 511

[-473 Mission B1 libblock E-fr]atin1 () : Bus: Bus_1
-4, Mission C libblock B3 = a10utl (OUT) : Bus: Bus_1
(-4, Mission C1 libblock -=» mallfa110utl -> a10utl -
[, Overall Mission libblock - =% glInl -»mallfalilni

Figure 4 SysML activity structure on the left and Simulink model structure generated from SysML on the right

- JJ] bcl : BusCreator -

m
m

Copyright 2016 InterCAX LLC 4

P SysML Model

‘2., Connection Type

7 Simulink Models

Bl PartB1_libblock
- Connector
- 4% Connector
- % Connector
4 Connector
1 Connector
- Connector
- % Connector

-[F] p1 ¢ Product
- JFin1: Bus_2
- JFl outl : Bus_2
- PartB_libblock

-[F] bc2 : BusCreator_2
-[F] bs2 : BusSelector_2

m

() Reference
() Function Wrap
() Data Map

(@ Model Transform

B || PartB1_libblock.slx
Bl-ay Parte1_libblock

|| bc2 : BusCreator
|| bs2 : BusSelector
-] p1: Product

}--E| in1 {IN) : Bus: Bus_2
]--E) outl (OUT) : Bus: Bus_2
s bs2f2 -= bc2f2
p1f1-=bc2f1

bs2f3 -= bc2(3
bs2/3 -=p1j2
bs2/1-=pi1j1

bc2f1 -= outl

L idiid

inl-»bs2f1

Figure 5 SysML internal block structure on the left and Simulink model structure generated from SysML on the right

]

[T

As shown in the first installment, we may open the newly-generated Simulink models from

Syndeia to view and rearrange them in the native MATLAB environment as shown in the figures below.

[Pa| Mission_A11_libblock

[Pa|PartB 1 _libblock

sin

51

L.

<signali=
C
allini <signalZ=

bs1

*

bel
Figure 6 Mission_A11_libblock.slx (file from Figure 4)

al1out1

<signali>

o =

x

Yy

L,
pl
—————
<sgnald=

bs2

“signali=

Figure 7 PartB1_libblock.slx (file from Figure 5)

)

out1

To see the same parameters that were set using properties in SysML, simply double-click that
block, like the s1 block above, whose Function parameter is shown in Figure 8 set to ‘sin’, and where the
drop-down menu here gives the other types of trigonometric functions that could be represented by the

same block just by changing this parameter.

| #, Function Block Parameters:

Trigonometric Function

4

Trigonometric and hyperbolic functions. When the function has more than one argument, the first argument corresponds to the top
{or left) input port. For sin, cos, sincos, cos +j sin, atan2 functions, CORDIC approximation can also be used to compute the output.

Parameters

Function:
Approxime cos

Output sig| asin

Sample ti

Figure 8 Setting trigonometry block parameter “Function” using the Simulink user interface

Copyright 2016 InterCAX LLC

Execute Simulink model generated from SysML using a script

Next, we show how to use a MATLAB script to execute the models generated in the section
above. When Syndeia generates an entire model structure, it uses inports and outports at each level, so
that they can be used modularly, where a model at any given level may be used as a model reference
block in a higher level model, or run as a standalone model. However, inports and outports have some
limitations in MATLAB as far as how some signals may be passed into and out of the top-level model, so
Syndeia has also been designed to generate a wrapper model with “_RUN” appended to the top-level
model’s name, and with FromWorkspace and ToWorkspace blocks connected to the original top-level
model’s inports and outports, respectively, as this model is used as a model reference block in the
“_RUN"” model, pictured in Figure 9 and Figure 10.

&. Overall_Mission_libblock. sl &. System_libblock. slx
Ej Overall_Mission_libblodk_RUM Ej System_libblock_RUN
E- |*g| Cwerall_Mission_libblock_RUM. sk B |*a| System_libblock_RUM. sh
Elapy Overall_Mission_libblock_RUN Elay System_libblock_RUN
EE}--]:[runningOverall_Mission_libblock : Overall_Mission_libblock EE}--]:[runningSystem_libblock : System_libblock
B E| In1 (IM) : Bus: Bus_1 B E| in1 (IN) : Bus: Bus_1
[E| In2 (IM) : Bus: Bus_2 B E| in2 (IN) : Bus: Bus_2
[out1 (oUT) : - out1 (OUT) :
~[= out2 (ouT) : -~ out2 (OUT) :
- =3 runningOverall_Mission_libblock/Out2 -= Out2 - =% runningSystem_libblockfout2 - out2
-=» runningOverall_Mission_libblockfOut1 - Outi -+ =% runningSystem_libblackfoutl -> outl
<=3 In2 -= runningOverall_Mission_libblockfIn2 - =% in2 - runningSystem_libblock/in2
- =¥ In1 - runningOverall_Mission_libblodk/In 1 =+ =3 inl-> runningSystem_libblock,in1
Figure 9 Wrapper file generated from activity model Figure 10 Wrapper file generated from block model

Seen in Simulink, the wrapper models look like this:

[*&| Overall_Mission_libblock_RUN # |&|System_libblock_RUN ¥
Oversll_Mission_libblodk System_libblock
In1 ot in ot
in2 out2
n2 : — Out2 running System_libblock
runningCrerall_Mission_libblock
Figure 11 Overall_Mission_libblock_RUN.slx (file from Figure 9) Figure 12 System_libblock_RUN.slx (file from Figure 10)

Using this wrapper model for inputs and outputs, we can write a script (i.e. Run.m) to set up
inputs, run this set of models, and generate plots of inputs and outputs. First, we set the variables for
the inputs and load them into the workspace, which is shown in Figure 13.

1 - time = (0:.2:10)"':

L %% generate input stroct of timeseries objects mirroring the strocture of the bus:

& — simin_ inl = struct('signall',timeseries (time/2,time), 'signal2’,timeseries (logical (rem(time*10,5)), time)) ;
T - simin in2 = struct('signall',timeseries(time,time), 'signal’,timeseries (logical (rem(time*10,4)),time), ...
g8 'signal3’', timeseries (int32 (floor(time)), time)) ;

Figure 13 Excerpt from Run.m where input signals are set up and loaded into the MATLAB workspace

Copyright 2016 InterCAX LLC 6

Next in the script, we set the solver and maximum step size to be used for each model that was
used as a model reference block, including the top-level model shown at line 30 in Figure 14. In order to
set parameters, each model must be loaded first (line 29). We also set continuous sample times for
inputs to the top-level model (lines 34 and 35) and set any other parameters that need to be set; in this
case we change the settings of our less-than block so that the two inputs can be different data types,
and we also set it to have a continuous sample time (line 38). Then we load the .mat file that contains
bus definitions (line 40) and run a simulation of the model (line 41) using the inputs that have previously
been loaded into the workspace. From the collective output, we extract the various individual outputs
(lines 44-46) and plot the inputs and outputs separately (lines 49-58).

29 — load system('System libblock')

30 — set_param('System libklock®,'Solwver', 'VariableStepDiscrete', 'HaxStep',".2")

31

32 % explicitly set the sample times to continuous

33— load_system('System libblock RUN')

34 — set_param('System libblock R 1','SampleTime', '0")

q55 set_param('System libklock RUN/in2®",'SampleTime','0")

36

37 % set parameters for the less-than block with different input port types

38 — set_param('PartCl_libklock/ltl', 'InputSameDT", 'off', 'SampleTime’, ' [0 O]")

39

40 — load System libblock.mat

41 — [out] = sim('System libklock RUN','Solver',"VariableStepDiscrete', 'Max3tep','.2"):

42 % run the system, returning all cutputs in [out] object and setting solver parameters to avoid warnings
43

44 — tout = out.get('tout');

45 — simout_outl = out.get('simout_outl');

46 — simout_out2 = out.get('simout_out2');

47 % extract the outputs for plotting

48

45 — figure

50 — plot (simin inl.signall.Time,simin inl.signall.Data,"o’',simin inl.signal2.Time,simin inl.signal2?.Data,'s',...
51 simin in2.signall.Time,simin in2.=zignall.Data, 'd',simin in2.signal?.Time,simin in2.=signall.Data, '*',...
52 simin in2.signal3.Time,simin in2?.=2ignal3.Data,'.', 'MarkerSize',8):

53 — legend ("inl.r r

54

55 — figure

56 — plot (tout, simout_outl.signall.Data,'o',tout,simout_ocutl.signall.Data, 's',..|.

57 tout,2imout_outl.signall.Data, 'd', tout,simout out2.signall.Data,'*", 'MarkerSize’',8):

SA = legend ("outl.real', 'outl.bool', 'out2.real', "out2.bool')

Figure 14 Excerpt from Run.m setting model and block parameters, running the simulation, and creating relevant plots

10 T T T T T T T T T 100 T T T T T T T T T
2 intreal i out?_real
Ir O inl.bool [] O outl.bool
in2.real & out2.real
8F i in2_booal || s0r Cﬁfmw # out2 bool ||
7L {}@Q’ + inZ.int

100 1

150 | | | | | 1 | | |
0 1 2 3 4 5 6 7 8 9 10

Figure 15 Input plots (lines 49-53 in Figure 14) Figure 16 Output plots (lines 55-58 in Figure 14)

Copyright 2016 InterCAX LLC 7

The plots in Figure 15 and Figure 16 show first the inputs generated in the script pictured above
and next the outputs generated by running these inputs through the Simulink model.

Compare Simulink models with their SysML sources

Finally, as we did in the first installment, we will utilize the persisted connections to compare
the Simulink models and SysML blocks/activities. First, we will compare some connections before
changing anything to show what happens when the models are in sync. The Comparison Result shown in
Figure 17 verifies in this case that all elements are in sync as they were just created. The different
numbers, names, and types of each set of actions, parameter nodes, and object flows (for activities) or
properties, flow ports, and connectors (for blocks) are shown below the main connection heading, and
the comment column gives further details on the status of each SysML and/or Simulink element.

Cou. w | Source ~ ‘ v W ‘ Latest Target ~ ‘ Comment - ||]I|
El'wiy 4... Overall Mission libblock Overall_Mission_libblock SysML activity vs. Simulink model ~
E-1 ACTIONS (Total = 7) BLOCKS (Total = 7) Actions vs. blocks
- bcl : BusCreator_1 bcl : BusCreator Call behavior action has a correspoding Simulink blodk.
- bs1:BusSelector_1 bs1 : BusSelector Call behavior action has a correspoding Simulink blods,
- gl: Gain al: Gain Call behavior action has a correspoding Simulink blods,
- logicl : Mot logicl : Logic Call behavior action has a correspoding Simulink blodk.
- ma : Mission A libblodk ma : Mission_A_libblock Call behavior action has a correspoding Simulink blods,
- mh : Mission B libblodk mb : Mission_B_libblock Call behavior action has a correspoding Simulink blods,
- mc : Mission C libblodk mc : Mission_C_libblodk Call behavior action has a correspoding Simulink blodk.
-2 PARAMETER NODES (Total = 4) PORTS (Total = 4) Parameter nodes vs, ports
- In1{in) : Bus_1 In1 (IM) : Bus: Bus_1 Parameter node has a corespanding Simulink port.
- In2 (in) : Bus_2 InZ (IM) : Bus: Bus_2 Parameter node has a coresponding Simulink port.
- Qutl (out) : Bus_1 Outl (OUT) : Bus: Bus_1 Parameter node has a coresponding Simulink port.
- Qut2 (out) : Bus_1 Out? (OUT) : Bus: Bus_1 Parameter node has a corespanding Simulink port.
E-3 OBJECT FLOWS (Total = 11) LIMES (Total = 11) Object flows vs. lines
- bcl.outl == mc.cInl bcl -= mcjcnl Ohject flow has a corresponding Simulink line (signal fbus).
- bsl.outl ->=glinl bsi-=qgl Ohiject flow has a corresponding Simulink line (signal fbus).
- bsl.out2 -= logicLinl bs1 -= logicl Object flow has a corresponding Simulink line (signal/bus).
- gl.outl ->bclinl al-=bcl Ohject flow has a corresponding Simulink line (signal fbus).
- Inil->ma.alnl Inl->mafalni Object flow has a corresponding Simulink line {signal fbus).
- In2 -=mb.bInl InZ -=mb/bInl Object flow has a corresponding Simulink line (signal/bus).
- logicl.outl -> bclinZ logic1 -= bcl Ohject flow has a corresponding Simulink line (signal fbus).
- ma.a0utl -> bsl.inl mafaCutl - bs1 Object flow has a corresponding Simulink line {signal fbus).
- mb.bOutl -> mc.cIn2 mb/bOutl -= mc/cIn2 Object flow has a corresponding Simulink line (signal/bus).
- mc.cOutl -> Outl mcfcOutl -= Outl Ohject flow has a corresponding Simulink line (signal fbus).
- mc.cOut? -= Out2 mcfcOut? -= Out? Object flow has a corresponding Simulink line {signalfbus).
Elwi 6... PartB1_libblock PartB1_libblock SysML block vs. Simulink model
= PROPERTIES (Total = 3) BLOCKS (Total = 3) Properties vs. blocks
bc2 : BusCreator bc2 : BusCreator Property has a correspoding Simulink blodk,
bs2 : BusSelector bs2 : BusSelector Property has a correspoding Simulink blodk.
pl: Product pl: Product Property has a correspoding Simulink blodk.
FLOW PORTS (Total = 2) PORTS (Total = 2) Flow ffull fproxy ports vs. Simulink ports
inl (IM) : Bus_2 in1 (IN) : Bus: Bus_2 Flow ffull fproxy port has a coresponding Simulink port.
outl (OUT) : Bus_2 outl (OUT) : Bus: Bus_2 Flaw ffull fpraxy part has a coresponding Simulink port.
COMMECTORS (Total = 5) LINES (Total = 5) Connectors vs. lines
bcZ.outl -> outl bc2 -= outl Connector has a corresponding Simulink line (signal/bus).
bs2.0ut? -= bc2.in2 bs2 -= bc2 Connector has a corresponding Simulink line (signal/bus).
bsZ.out3 -> plin2 bs2 -=pl Connector has a corresponding Simulink line (signal/bus).
inl-=bs2.inl inl-=bs2 Connector has a corresponding Simulink line (signal/bus).
pl.outl -=bc2inl pl-=hbc2 Connector has a corresponding Simulink line (signal/bus). v

Figure 17 Compare SysML and Simulink after generating executable Simulink models from SysML activity & block structures

Copyright 2016 InterCAX LLC

Next we will make changes on either side and use the Syndeia compare capabilities to show the
differences across each connection. Syndeia is able to catch changes made on one side or the other, or
changes made to both sides simultaneously, including:

e SysML side changes

Addition/removal of part properties in a block OR call behavior actions in an activity
Changing name/type of part properties in a block OR call behavior actions in an activity
Changing name of block used as part property OR activity used as call behavior action
Addition/removal of flow ports in a block OR activity parameter nodes in an activity
Changing name/type of ports in a block OR activity parameter nodes in an activity

O O O O O

Addition/removal of connectors in a block OR object flows in an activity
o Rewiring of connectors in a block OR object flows in an activity

e Syndeia side changes

Addition/removal of model reference blocks

Changing name/type of model reference blocks

Addition/removal of inports and outports

Changing name/type of inports and outports

Changing elements of bus objects typing inports and outports

Addition/removal of lines (block connections)

O O O O O O

Rewiring of lines

In this note, we will show only a representative subset of these changes on both the SysML and
Simulink side to simulate concurrent modeling efforts. For Overall Mission libblock we add a new
activity mb2 : Mission B libblock to the SysML activity structure (Figure 18), and concurrently delete a
library block logicl in Simulink (Figure 19). We also rewire the object flows in SysML to the appropriate
pins on the actions, and connect the lines/connectors in Simulink to close the gap. For PartB1_libblock
we delete the p1 part property and all connectors between bs2 and bc2 in SysML (Figure 20), while
concurrently in Simulink we add a new Simulink library block logic2 and rewire the lines to connect it
between the second ports of bsl and bc2 (Figure 21).

(‘act [Activity] Overall Missicn libblock [Overall Mission Iibblucli —— -
in1 «Simulink_Library_Blocks | outl
/ a1 : Gain
B ny
R SR RO CR > «Simulink_Library_Blocks
int Lo bs1: BusSelector_1 bed : BusCreator_1
I| T outl
A \
| oy
R ma:MissionA | | "“12 \ ——
ain1 : Bus_1 libblock | alut! : Bus_1 / cint:Bus_ 1| me:MissionC cOut! : Bus_1
/_’ th) | wSimulink_Library_Blocks | / libblock [Ny . -
N L -
- logic1 : Not th 3
wblocks Q in1 outl whlocks Q
In1: Bus_1 Out1: Bus_1
«blocks = S T =
o as 2 bint : Bus 2 mb2 : Mission B libblock «blocks
; < 4 mb : Mission B s, th [ECutl: Bus_ 2 Out2 : Bus_1
libblock — e >
bin1 : Bus Z 1 th| Ty 1—
bOut! : Bus_2 cinZ : Bus_2

cOut2 : Bus_1

Figure 18 Added new call behavior action mb2 : Misison B libblock & rewired object flows between pins on mb—>mb2->mc

Copyright 2016 InterCAX LLC 9

DveraII_Missinn_Iibends; 3 hd

Mission_C_libblodk
Mission_aA_libblodk
= Bis_1
@m alni a0ut1 cDut1
Imd s Cut1
ma
Missicn_B_libblodk
= Bis_2 Bus_2
@m bin1 BOuw! —_———eeeee 3 cin?
In2 s o Cut2
mb . "

mi

Figure 19 Deleted Simulink library block logic1l (NOT) and rewired boolean line <signal2> directly between bs1 = bcl

ibd [Block] PartB1_lioblock [PartB1_libblock 1)

“IJ':TUXW ; ; . f I GIJI'inW
. hs2 : BusSelect 2 afulle- -+ - - - - o + - | s Boelreastar 3 F - - - - MRie T
[“]m' : Bus_g s us or_ : : : : : : : : : : m?ﬂ i ~Bus_ 2 [_El
. . out1 : Real_Full - . .

" out! :~Bus_2

in1:Bus_2

........ «proxys proxys -
|:|th3 : ~Iriteger_l:=lnw :
Figure 20 Deleted part property p1 and all connectors between bs2 > bc2
*a|PartB 1_libblock -
diouble
g
=signall= double
®
= Bus 2 bookan
Q)m g
int int32 p1
“zignald=
bs2 |
<=ignal= bookean
= - NOT
logic2

Figure 21 Added new Simulink library block logic2 (NOT) and rewired line for boolean line <signal2> from bs2 - logic2 = bc2

Copyright 2016 InterCAX LLC 10

Then, we compare again (results shown in Figure 22).We can see that new queries have been
made to both the SysML and Simulink models as changes were detected, and we can see exactly where
the two models are out of sync, and which side may need to be updated, if any. Again, these are only a
representative sample of the many types of changes which can be made to either side and caught by
Syndeia compare.

=% Repository Manager a Connection Manager Bﬁ, Connection Browser &z Connection Summary }f ‘\, Settings
Type here to filter connections | Clear | | Export to Excel |
Co.. w ‘ Source w ‘ I | Latest Target w | Comment e ||]I|
El'wiy 4... Overall Mission libblock Overall_Mission_libblock SysML activity vs. Simulink model ~
B-1 ACTIONS (Total = 8) BLOCKS (Total = &) Actions vs, blocks
- bl : BusCreator _1 bcl : BusCreator Call behavior action has a correspoding Simulink block.
- b=l : BusSelector_1 bs1 : BusSelector Call behavior action has a correspoding Simulink block.
gl Gain gl: Gain Call behavior action has a correspoding Simulink blodk.
- logicl : Mot Simulink block does not have a corresponding call behavior action,
- ma : Mission A libblodk ma : Mission_A_libblodk Call behavior action has a correspoding Simulink blodk,
- mb2 : Mission B libblock Simulink block does not have a corresponding call behavior action.
- mb : Mission B libblodk mb : Mission_B_libblodk Call behavior action has a correspoding Simulink blodk.
- mc : Mission C libblodk mc : Mission_C_libblodk Call behavior action has a correspoding Simulink block.
E-2 PARAMETER NODES (Total = 4) PORTS (Total = 4) Parameter nodes vs, ports
-+ Inl(in) : Bus_1 In1 (IN) : Bus: Bus_1 Parameter node has a coresponding Simulink port.
- In2(in) : Bus_2 In2 (IN) : Bus: Bus_2 Parameter node has a coresponding Simulink port.
- Outl {out) : Bus_1 Outl (OUT) : Bus: Bus_1 Parameter node has a coresponding Simulink port.
- Qut2 {out) : Bus_1 OutZ (OUT) : Bus: Bus_1 Parameter node has a coresponding Simulink port.
E-3 OBJECT FLOWS (Total = 132) LIMES (Total = 10) Object flows vs, lines
mb/bOutl -= mcfcIn2 Simulink line (signal/bus) does not have a corresponding object flow.
bsl->bcl Simulink line (signal/bus) does not have a corresponding object flow.
- bcl.outl -= mc.cInl bcl -= mcfcinl Ohject flow has a correspanding Simulink line (signal fbus).
- bsl.outl-=glinl bsl-=gl Object flow has a corresponding Simulink line (signal/bus).
- bsl.out? -= logicLinl Ohject flow does not have a corresponding Simulink line (signal fbus).
- gl.outl -=beclinl gl-=bcl Object flow has a corresponding Simulink line (signalbus).
- Inl-=ma.alnl Inl-=mafalnl Object flow has a correspending Simulink line (signal bus).
- In2 -> mb.bIni In2 -= mh/bIni Object flow has a corresponding Simulink line (signal/bus).
- logicl.outl -> bclin2 Object flow does not have a corresponding Simulink line (signal/bus).
- ma.a0utl ->bslinl mafaOutl -= bs1 Ohiject flaw has a correspanding Simulink line (signal bus).
- mb2.bOutl -> mc.cIn2 Object flow does not have a corresponding Simulink line (signal/bus).
- mh.bOut1 -> mb2.bIn1 Ohject flow does not have a corresponding Simulink line (signal fbus).
- mc.cOutl -» Cutl mcfcOutl - Outl Object flow has a corresponding Simulink line (signal/bus).
- mc.cOut? -= Out2 mcfcOut? -= Out2 Ohject flow has a correspanding Simulink line (signal fbus).
El'wiy 6... PartB1_libblock PartB1_libblock SysML block vs. Simulink model
E-1 PROPERTIES (Total = 2) BLOCKS (Total = 4) Properties vs. blocks
logic2 : Logic Property does not have a correspoding Simulink block,
pl: Product Property does not have a correspoding Simulink blodk,
* b2 : BusCreator bc2 : BusCreator Property has a correspoding Simulink block.
- bs2 : BusSelector bs2 : BusSelector Property has a correspoding Simulink blodk.
FLOW PORTS (Total = 2) PORTS (Total = 2) Flow ffull fproxy ports vs. Simulink ports
finl (IN) : Bus_2 inl (IM) : Bus: Bus_2 Flow ffull fproxy port has a coresponding Simulink port.
e putl (OUT) : Bus_2 outl (OUT) : Bus: Bus_2 Flow/full fproxy port has a coresponding Simulink port.
CONNECTORS (Total = 2) LIMES (Total = 7) Connectors vs, lines
pl->bc2 Simulink line (signal/bus) does not have a corresponding connector.
bs2 - logic2 Simulink line (signal/bus) does not have a corresponding connector.
bs2 -= bc2 Simulink line (signal/bus) does not have a corresponding connector.
bs2 -=pl Simulink line (signal/bus) does not have a corresponding connector.
logic2 -= bc2 Simulink line (signal/bus) does not have a corresponding connector.
bc2.outl -=> outl bcZ -= outl Connector has a corresponding Simulink line (signal fbus).
= jnl-»bs2.inl inl-=bs2 Connector has a corresponding Simulink line (signal fbus). W

Figure 22 Compare SysML and Simulink after making changes shown in Figures 18-21

Copyright 2016 InterCAX LLC 11

Summary

The intent of this second note in our series has been to illustrate the possibilities for using a
SysML model to generate an executable Simulink model with native Simulink library blocks using
Syndeia, so that the resulting model is ready to be executed in the MATLAB/Simulink environment using
an appropriate script. As in the previous installment, we showed that Syndeia also preserves and version
manages connections between Simulink models and SysML blocks or activities, which can then be used
to compare and catch changes that have been made to either side.

To explore the use case where SysML block and activity structures are used to generate a
skeletal structure of Simulink models either as an internal block structure with part properties, or an
activity structure with call behavior actions, see the previous Part 1. The following Part 3 will continue
exploring the Syndeia Simulink interface for the reverse case of generating SysML activity and block
structures from a Simulink model reference structure. Further use cases are in the works for Syndeia 3.0,
so stay tuned for Part 4 and beyond!

If you are interested in trying Syndeia, follow the instructions here to get a free 30-day evaluation
license and download instructions: http://intercax.com/products/syndeia/download/

About the Author
Rose Yntema (rose.yntema@intercax.com) is Applications Engineer for Intercax LLC, Atlanta, GA.
For further information, visit us at www.intercax.com or contact us at info@intercax.com.

Copyright 2016 InterCAX LLC 12

http://intercax.com/products/syndeia/download/
mailto:rose.yntema@intercax.com
http://www.intercax.com/
mailto:info@intercax.com

