The promise of Model-Based Systems Engineering (MBSE) is that we can capture all aspects of a system, including architecture, design, analysis and operations, in a single unified digital model. The challenge is that the development of complex systems requires the use of many different software tools and databases. The objective of this TechNote is to illustrate how a combination of tools can work together on the design of a new weapons system, an electromagnetic railgun. We will use SysML architectural modeling (MagicDraw or Rhapsody), physics-based analysis (Mathematica and Simulink), mechanical CAD (NX) and requirements management (Jama), connected by two Intercax tools, the MBSE platform Syndeia and the parametric solvers ParaMagic (for MagicDraw) and Melody (for Rhapsody).
Railguns represent an elegant (if challenging in practice) solution to the problem of putting energy on target. In its most basic form (Figure 1), DC electrical current is pulsed through a single loop consisting of two long conductive Rails and a movable Armature that bridges them. The interaction of the magnetic field B generated by the current through the Rails with that same current I flowing through the Armature produces a lateral force F on the Armature. If the Armature is allowed to slide down the length of the Rails, it can carry the Projectile and launch it from the end of the Rails towards a target. The exit velocity (km/sec) and kinetic energy (MJ) imparted to the projectile can meet or exceed that of conventional artillery without the cost and handling hazards of conventional explosive propellants. Experimental systems have been reported with exit velocities >3 km/sec and energies >30 MJ. However, many practical problems stand in the way of widespread deployment, including the destructive thermal and mechanical stresses applied to the rails in each shot.
Note: the author of this TechNote has no special expertise or confidential knowledge of railgun design and has relied on public sources (e.g., Wikipedia, Popular Mechanics) for basic principles and parametrics. The objective of this example is not to design a practical weapons system, but to show how MBSE might be applied to the problem.
The Concept of Operations phase of system development requires us to answer several questions:
We will use SysML to hold this information. Its advantage relative to PowerPoint or Vizio is that the model we create becomes a solid foundation for the modeling of the SOI. Architectural frameworks such as UPDM or UAF would work equally well for this phase.
Figure 2 shows the composition of our railgun domain. It includes
We can use the behavior modeling capabilities of SysML to capture scenarios of operation. Figure 3 is a sequence diagram describing the firing operation as a series of transactions between the control station, the railgun and the projectile storage facility, all parts of the domain in Figure 2. One characteristic of railguns is that they require massive current (mega-amperes) for very short periods (milliseconds), which is supplied from an energy storage device such as a capacitor that is charged slowly from a continuous power source and discharged rapidly during firing. This charging-firing cycle must be accommodated in the scenario of operation.
This same cycle is captured in a state machine diagram in Figure 4 for the Railgun block, including a Discharging state before the system can be shut down. Note that Figure 4 is a behavior of the SOI, while Figure 3 is a behavior of the domain. However, they are linked by the state invariant symbols on the Railgun lifeline in Figure 3, which show the Railgun state at different stages of the scenario of operation.
Finally, we need to consider the inputs required by the Railgun. The SysML IBD (internal block diagram) in Figure 5 summarizes these at a very abstract level. The Railgun requires from its Platform:
In the second part of this blog series, we begin modeling the RailGun system itself. We start by building a system architecture in SysML, then use Syndeia to bring in model elements from external tools, including system requirements from Jama and geometric dimensions from NX for analysis and requirements verification, the topic of the final part of the series.
Related posts: