
Melody™ R3 • Users Guide 

75 Fifth Street NW, Suite 213
Atlanta, GA 30308, USA
Voice: +1- 404-592-6897

Web: www.InterCAX.com/melody 

 E-mail: melody@intercax.com

Melody™ R3 
SysML Parametric Solver for IBM Rational Rhapsody  

 
Users Guide 

 

Table of Contents 

1  About ...................................................................................................................................... 3 

2  Updates Since The Last Release (Melody™ R2) ................................................................ 4 

3  Quick Start ............................................................................................................................. 5 
3.1  First Pass – execute existing models ............................................................................... 5 

3.2  Second Pass – create new models .................................................................................. 7 

4  Installation ............................................................................................................................. 8 
4.1  Installation Requirements ................................................................................................ 8 
4.1.1  System Requirements ............................................................................................... 8 
4.1.2  Rhapsody Requirements ........................................................................................... 8 
4.1.3  Core Solver Requirements ........................................................................................ 8 

4.2  Installation Process  ........................................................................................................ 9 

5  User Documents .................................................................................................................. 17 
5.1  Users Guide ................................................................................................................... 17 

5.2  Tutorials ......................................................................................................................... 17 

5.3  Other Examples ............................................................................................................. 17 

6  SysML Model Requirements .............................................................................................. 18 
6.1  Structural requirements .................................................................................................. 18 
6.1.1  Model schema requirements ................................................................................... 19 
6.1.2  Model instance requirements .................................................................................. 21 

6.2  Naming requirements ..................................................................................................... 23 

6.3  Mathematical expression requirements ......................................................................... 24 

6.4  Math constants and functions ........................................................................................ 24 

6.5  Conditional Functions and Operators ............................................................................ 26 

6.6  Aggregate Properties and Functions ............................................................................. 26 
6.6.1  Multiplicity ................................................................................................................ 27 
6.6.2  Instance Attribute (Slot) Values ............................................................................... 27 

http://www.intercax.com/melody


Melody™ R3 • Users Guide 

Copyright © 2010, InterCAX LLC 2

6.6.3  Aggregate Functions and Operators ....................................................................... 27 
6.6.4  Complex Aggregate Relationships .......................................................................... 28 

6.7  Limitations ...................................................................................................................... 32 

7  Program Features ............................................................................................................... 34 
7.1  Command Menus ........................................................................................................... 34 

7.2  Browser .......................................................................................................................... 36 
7.2.1  "Solution in progress" Window ................................................................................ 36 
7.2.2  Variable Browser ..................................................................................................... 37 
7.2.3  Toolbar .................................................................................................................... 38 
7.2.4  Relationship Browser .............................................................................................. 38 
7.2.5  Editing an Instance in the Browser Window ............................................................ 38 

7.3  Melody.ini file ................................................................................................................. 38 

8  Connections to External Tools .......................................................................................... 40 
8.1  Melody™ - Excel Connection ......................................................................................... 40 
8.1.1  Operation ................................................................................................................. 41 
8.1.2  Features and Specific Behavior .............................................................................. 47 
8.1.3  Limitations ............................................................................................................... 48 

8.2  Melody™ - Custom Mathematica Connection (available only with Melody™ Pro) ........ 48 
8.2.1  Installation ............................................................................................................... 49 
8.2.2  Usage ...................................................................................................................... 49 
8.2.3  Graphing Functions ................................................................................................. 50 
8.2.4  Statistical Functions ................................................................................................ 51 
8.2.5  User-Defined Mathematical Functions .................................................................... 51 
8.2.6  UserfnN.m ............................................................................................................... 52 
8.2.7  Custom Functions ................................................................................................... 52 

8.3  Melody™ - MATLAB/Simulink Connection (available only with Melody™ Pro) ............. 52 
8.3.1  Using MATLAB scripts ............................................................................................ 57 
8.3.2  Using MATLAB functions ........................................................................................ 58 

9  Trade Studies ...................................................................................................................... 60 
9.1  Operation ....................................................................................................................... 60 

9.2  Limitations ...................................................................................................................... 64 

10  Copyright ............................................................................................................................. 64 
10.1  Copyright statement from InterCAX LLC .................................................................... 64 

10.2  Liability disclaimer from InterCAX LLC ....................................................................... 64 
 
 
 
 



Melody™ R3 • Users Guide 

11  ABOUT    ABOUT
This is the Users Guide for Melody™ Release 3 (R3) for IBM Rational Rhapsody. The sections 
in this document and their purpose are stated below: 
• Updates since the last release (Melody™ R2) – lists the new features and improvements in 

Melody™ R3. 
• Quick Start – speed up learning Melody™ (run existing models, create new models) 
• Installation – installation instructions for Melody™ 
• User Documents – important documents for using Melody™ (including tutorials and 

examples) 
• SysML Model Requirements – requirements for creating SysML models executable in 

Melody.  
• Program Features – learn about Melody’s user interface  
• Connections to External Tools – learn about incorporating Mathematica functions, MATLAB 

functions/scripts & Simulink models, and Excel spreadsheets in your SysML parametric 
models and orchestrating their execution using Melody™. 

• Trade Studies – learn about setting up and executing trade studies on your parametric 
models to select the best-in-class system alternatives. 

• Copyright – important copyright information that users must read 
 
Melody™ R3 comes in two editions – Standard and Pro. The table below compares the features 
of these editions. All features (both editions) are described in this Users Guide. 

Features Melody™ Editions 
Standard Pro 

Regular math solving 
Library of math functions available 
 

Yes Yes 

Use Mathematica or OpenModelica (free) as a core solver 
 
 

Yes Yes 

Excel Connection 
Connect SysML block attributes to Excel spreadsheets and read/write 
from/to spreadsheets. 
 

Yes Yes 

Trade Studies 
Execute parametric models for a set of scenarios defined in Excel 
spreadsheets, and export trade results to spreadsheets for plotting and post-
processing. 
 

Yes Yes 

MATLAB/Simulink Connection 
Wrap MATLAB functions/scripts as constraint blocks and use in parametric 
models; requires Mathematica as a core solver 
 

No Yes 

Custom Mathematica Connection 
Wrap custom Mathematica functions as constraint blocks and use in 
parametric models; requires Mathematica as a core solver 
 

No Yes 

Execute Complex Aggregate Relationships 
Execute parametric models involving aggregate part / reference / shared 
properties 
 

No Yes 

 



Melody™ R3 • Users Guide 

The following conventions are used in this document: 
• Melody™ implies this Melody™ R3 plugin 
• Rhapsody (or Rhapsody SysML) implies IBM Rational Rhapsody Designer (or Architect) for 

System Engineers, version 7.5.2.  
• Text enclosed by < > implies that you need to provide your system-specific settings, such as 

installation folder path or IP address. 
• Text written in this font implies that it is a computer keyword or an abbreviation for a 

computer keyword.  
• <Rhapsody_Root> refers to the Rhapsody installation folder. 

(e.g. C:\Program Files\IBM\Rational\Rhapsody\7.5.2 on a Windows machine). 
• <Melody_Root> refers to the Melody installation folder <Rhapsody_Root>\Share\Profiles\Melody 
• OM implies OpenModelica 
 
Rational Rhapsodya  is a registered trademark of IBM. 
Mathematicab  is a registered trademark of Wolfram Research, Inc. 
OpenModelicac is a freely-available modeling and simulation tool as part of the OpenModelica 
Project supported by the Open Source Modelica Consortium (OSMC). 

22  UPDATES  SINCE  THE  LAST  RELEASE  (MELODY™  R2)  U S T L R (M ™ R2PDATES INCE HE AST ELEASE ELODY )

                                                

Melody™ R3 offers significant end-user improvements compared to the previous version 
(Melody™ R2). The key end-user improvements are as follows: 
 
1. Execute complex aggregate relationships — With Melody™ R3, users can execute 

complex aggregate relationships. Complex aggregate relationships allow users to express 
parametric relations over a set of part / reference / shared properties, e.g. summation of 
weight and cost variables for a collection of parts. For details, refer to section 6.6.4. 
 

2. Reuse blocks and constraint blocks — Melody™ R3 can work with block structures and 
parametric models that reuse blocks and constraint blocks. It builds on improvements in 
parametric modeling in Rhapsody 7.5.2 and additional workarounds to provide this feature.  

 
3. Support for packaging structures — Melody™ R3 can work with blocks and instances 

irrespective of the packaging structure. This provides users complete flexibility in organizing 
libraries of blocks, constraint blocks, and block instances, and reuse them for defining and 
evaluating different system alternatives.  
 

4. Execute parametric models involving nested parts — Melody™ R3 provides a 
workaround for creating parametric models involving nested parts. Users can create 
parametric models with arbitrarily nested part / reference / shared properties, and execute 
them with Melody™ R3. For details, refer to item 6.1.1 (item 6).  

 
5. Execute parametric models involving reference / shared properties — Melody™ R3 

provides a workaround for creating and executing parametric models involving reference 
and shared properties. For details, refer to item 6.1.1 (item 6). 

 
6. Support for inheritance — With Melody™ R3, users can execute parametric models 

involving inherited value properties, value properties owned by inherited part / reference / 
shared properties, and inherited constraint properties. 

 
a IBM Rational Rhapsody: http://www-01.ibm.com/software/awdtools/rhapsody/ 
b Mathematica (Wolfram Research): http://www.wolfram.com/ 
c OpenModelica - http://www.ida.liu.se/~pelab/modelica/OpenModelica.html 

Copyright © 2010, InterCAX LLC 4

http://www-01.ibm.com/software/awdtools/rhapsody/
http://www.ida.liu.se/%7Epelab/modelica/OpenModelica.html


Melody™ R3 • Users Guide 

 
7. Incremental testing and verification — Melody™ R3 offers users the ability to build, test, 

and verify parametric models incrementally. The key enabler here is that parametric 
execution can be invoked for any block instance in the instance model hierarchy, e.g. part 
instance, sub-system instance, or system instance, by selecting the subject instance in the 
model tree or the instance diagram. When invoked for a block instance, Melody™ executes 
the parametric models for that instance and all instances populating its part, reference, and 
shared properties, recursively. Melody™ R3 eliminates the need to create CXS and CXI 
heading blocks to identify the top-level block and instance. 
 

8. Warning users of incompatible value / data types — Melody™ R3 warns users if 
parametric models involve binding connectors that connect value properties or constraint 
parameters with incompatible value or data types. 
 

9. Utilities — Melody™ R3 provides utilities for efficient model building and debugging. Some 
of the main utilities are as follows. See section 7.1 for the complete list. 

 
a. Refactor binding connectors — Rhapsody 7.5.2 locates binding connectors created in 

parametric diagrams (for a block) inside the parent package of the block and not in the 
block itself. With Melody™ R3, users can automatically move binding connectors from 
their current location to the context block. For details, see the command Util > Refactor 
Binding Connectors in section 7.1, and the Melody™ tutorials. 
 

b. Instance Creation — With Melody™ R3, users can automatically generate an instance 
model for a given block. This utility also creates a block definition diagram that shows 
the instance model. For details, see Util > Create Instance in section 7.1, and the 
Melody™ tutorials. 
 

c. Add Instances to Aggregate Property — With Melody™ R3, users can add instances for 
populating aggregate part / reference / shared properties. For details, see Util > Add 
Instances to Aggregate Property in section 7.1, and the Melody™ tutorials (Section 6, Step 
V). 

33  QUICK  START  Q SUICK TART
This section recommends a starting point for users to quickly learn Melody™.  

3.1 First Pass – execute existing models 
In this first pass you will review and execute parametrics in existing SysML models per the next 
steps. 
 
• The first model (Addition) is a basic model for testing Melody™ installation. In this model, a 

system variable is computed by adding two sub-system variables. 
 

• The second model (Satellite) represents a simple satellite. It exercises basic SysML block 
definition and parametric modeling concepts and is thus useful for learning SysML 
parametrics. 

 
1) Install Melody™ — see installation instructions in Section  3 below.  

 
2) Open and execute the Addition model 

a) Start Rhapsody  

Copyright © 2010, InterCAX LLC 5



Melody™ R3 • Users Guide 

b) Open the Addition model located here: 
<Rhapsody_Root>\Share\Profiles\Melody\models\tutorials\Addition\Addition.rpy 

c) Locate the package Addition::Instance01.  
d) Right click on the Gamma_Inst block instance and select Melody→Browse. This will launch 

the Melody™ browser, as shown below. 
e) Click the Solve button. After successful solution, the value of c (target variable) should 

equal to 5. 
 
Note: You should have configured a core solver during installation (Section  3). If you have 
not installed OpenModelica (free) or Mathematica, you can use our test Mathematica server 
for a trial period (30 days). For this, you will need an internet connection. It is possible that 
your enterprise firewall may block connection to our server. 
 

 
Figure 1: Melody™ browser showing Addition model instance  

 
3) Open and execute the Satellite model 

a) Open the Satellite model located here: 
<Rhapsody_Root>\Share\Profiles\Melody\models\tutorials\Satellite\Satellite.rpy 

b) Read input values from a spreadsheet — Right click on the package Satellite:: Satellite01 
and select Melody → Excel → Read from Excel 

c) Solve the model — Right click on the block instance SatelliteSystem01 located in the 
package Satellite:: Satellite01 and select Melody → Browse. Click on the Expand button to 
expand the model and then click on the Solve button. After solving, the Melody browser 
will show results as below (SatelliteSystem.weight = 230). 
 

Copyright © 2010, InterCAX LLC 6



Melody™ R3 • Users Guide 

 
Figure 2: Melody™ browser showing Satellite model instance  

 
d) Click on the Update to SysML button the Melody browser. This will update the SysML 

instance model with the solved results. 
e) Write output values to a spreadsheet — Right click on the package Satellite:: Satellite01 

and select Melody → Excel → Write to Excel. This will write out the Satellite Weight (230 kg) 
and Power Supply Required (16 KW) in the SatelliteOutput.xlsx file located in the same 
folder as the SysML model 
(<Rhapsody_Root>\Share\Profiles\Melody\models\tutorials\Satellite\). 

3.2 Second Pass – create new models 
This Second Pass takes you deeper, including learning how to create SysML models that 
contain parametrics that can be solved using Melody™. It is useful to identify several types of 
users who work with SysML parametrics: 
• Type 1: Someone who works with an existing model (including executing it and performing 

additional instance-oriented interactions such as solving, modifying values, changing 
causalities, and re-solving). 
o This type of user needs the least amount of SysML and parametrics know-how.   
o This a good place to start for the casual user, for someone wanting to do basic demos, or 

someone just beginning to explore SysML parametrics.  
• Type 2: Someone who modifies the structure of an existing model and/or creates new 

instances. 
o This type of user requires more know-how. 
o They also need a fair amount of Rhapsody SysML tool-aided modification support (in 

some respects more than Type 3 users).   
o This is a good step towards becoming a Type 3 user. 

• Type 3: Someone who creates their own model structures and instances from scratch 
(and/or from pre-existing building blocks from a library). 
o This type of user requires a fair amount of know-how and needs good Rhapsody SysML 

support. 
• Type 4: Someone who creates building block libraries that Type 2 and Type 3 users can 

utilize. 

Copyright © 2010, InterCAX LLC 7



Melody™ R3 • Users Guide 

o This type of user requires similar skills as Type 3, but with a bent towards making their 
work reusable and modular, as well as providing good documentation and rigorous 
validation. 

 
The First Pass in the section above provides a quick introduction for Type 1 users. 
 
After completing the First Pass, you can work at the Type 1 level with all the pre-built tutorial 
models and examples provided in this release (see a listing of these models in Section 5 of this 
document). 
 
After completing the First Pass, you also have a good “big picture” basis to now proceed with 
the step-by-step tutorials (see section 5.2). After completing the tutorials, you will have achieved 
a good foundation to work as a Type 3 user.  There are other topics you may eventually need 
that may be addressed in future tutorials and/or courses. 

4  I4 INSTALLATION  NSTALLATION

                                                

4.1 Installation Requirements 
4.1.1 System Requirements 
1) Operating system: Melody has been tested to workd with Rhapsody installed on the 

following operating systems: 
a) Windows XP — 32-bit and 64-bit 
b) Windows VISTA — 32-bit 
c) Windows 7 — 64-bit 

2) Java: Melody requires Java 1.6 or higher. Melody uses the same Java installation that is 
being used by Rhapsody. To check the Java version used by Rhapsody, follow the steps 
below: 
a) Open rhapsody.ini file located under <Rhapsody_Root>. For example, C:\Program 

Files\IBM\Rational\Rhapsody\7.5.2\rhapsody.ini 
b) Locate the JVM section in the file and ensure that the JavaLocation variable points to Java 

1.6 on your computer. For example, 
[JVM] 
JavaLocation=C:\Program Files\Java\jdk1.6.0_21\ 

3) Hard disk space: Melody requires 50 MB of hard disk space for installation. 
4) RAM: Melody requires 500 MB of memory. Additional available RAM will improve the 

performance of the plugin. 
 
4.1.2 Rhapsody Requirements 
1) IBM Rational Rhapsody Designer (or Architect) for System Engineers version 7.5.2 should 

have been installed and configured on your system. Melody R3 is not compatible with 
Rhapsody 7.5 or 7.5.1. It leverages updates made to SysML parametric modeling in 
Rhapsody 7.5.2. 
 

4.1.3 Core Solver Requirements 
Melody™ requires a core solver for backend number crunching. Users may select Mathematica 
or OpenModelicae (free) as the core solver—see section 4.2 (Step 5) for installation and 
configuration details. 

 
d Unless otherwise specified, Melody™ may work with other editions of these operating systems but it is not been 

rigorously tested for editions other than those mentioned here.  
e OpenModelica - http://www.openmodelica.org/ 

Copyright © 2010, InterCAX LLC 8

http://www.openmodelica.org/


Melody™ R3 • Users Guide 

 
If you plan to use Mathematica as the core solver: 
1) Melody™ has been tested with Mathematica version 7.0.  
2) Melody™ has been tested to work with local Mathematica installed directly on user’s hard 

drive or on a networked hard drive.  
3) Melody™ has also been tested to work with Mathematica installed on a network, using our 

customized web-services product XaiTools Web ServicesTM (a.k.a. XWS). This allows 
multiple users to access a single Mathematica installation for solving services. Please 
contact us (melody@intercax.com) if you would like to setup XWS for your organization. 

 
If you plan to use OpenModelica as the core solver: 
1) Melody™ has been tested to work with OpenModelica 1.5.0 (on Windows) installed locally 

on a user’s hard drive. 

4.2 Installation Process 
Before installing the Melody™ plugin, make sure that you have administrative privileges to 
install new software on your computer. Follow the steps below to install Melody™: 
 
Step 1. Obtain a Melody™ license  
After downloading Melody™, users must first obtain a license file. Evaluation licenses for 
Standard and Pro editions are available for a 30-day trial. After that, users must obtain a regular 
paid license. To request for a license, follow the steps below: 
 
1. Note the drive letter and volume serial number for the volume where Rhapsody is 

installed on your computer. As shown in Figure 3 below, type vol at the command prompt 
and your drive letter and volume serial number should be displayed. 
 

2. Note the mac address of any of your network cards. As shown in Figure 3 below, type 
ipconfig/all at the command prompt and note the physical address (mac address) of any of 
your network cards. For the example in Figure 3, the mac address of a wireless card is 
noted. 

 
1. Type vol at the command prompt.
2. Note the drive letter and the serial number. In this case, 

drive letter is C and volume serial number is 48DA-4ED5

1. Type ipconfig/all at the command prompt.
2. Note the mac address of any one of your network cards. 

In this case, the mac address of a wireless card is 
00-21-6A-30-40-90

Figure 3: Information required for a Melody™ license file request  
 
3. Send a license request email to InterCAX: Email the following to melody@intercax.com 

Copyright © 2010, InterCAX LLC 9

mailto:melody@intercax.com


Melody™ R3 • Users Guide 

a. Melody edition (Standard or Pro) for which you are requesting a license  
b. Drive letter and volume serial number 
c. Mac address of any of your network cards 
d. Your complete contact information  

 
4. If this is the first time you are using Melody™, we will respond within 1 business day with an 

evaluation license for your machine. If your evaluation period is over and you would like to 
purchase a regular license, contact us by phone (404-592-6897, ext 101) or email 
(melody@intercax.com) to setup a payment method. 
 

5. After you obtain a Melody™ license file (Melody.lic), proceed with the installation steps 
below. 

 
Step 2. Save existing projects and close Rhapsody 
 
Step 3. Install the Melody plugin 
a) Double click on the Melody™ installation executable (.exe) file. 
b) Read through the license agreement and click on the I Agree button if you accept the terms 

and conditions. 
 

 
Figure 4: Melody™ installation – license agreement 

 
c) Select the components for installation (as shown below) and click the Next button. 

 

Copyright © 2010, InterCAX LLC 10

mailto:melody@intercax.com


Melody™ R3 • Users Guide 

 
Figure 5: Melody™ installation – select all components to install 

 
d) Select the Rhapsody installation for which you would like to install Melody™ per below: 

 
i) For Windows XP and VISTA, select <Rhapsody_Installation>\Share\Profiles\Melody, for 

e.g. C:\Program Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody 
 

ii) For Windows 7, select  
C:\Users\<your account>\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody 

 

 
Rhapsody installation / destination folder for Win XP and VISTA  

 

Copyright © 2010, InterCAX LLC 11



Melody™ R3 • Users Guide 

 
Rhapsody installation / destination folder for Win 7 

 
Figure 6: Melody™ installation folder 

 
Note that a Melody™ installation is specific to a Rhapsody installation. If you have two versions 
of Rhapsody on a machine and plan to use Melody™ for both, you must install Melody™ for 
each of them. 

 
e) Specify a new Start Menu folder or select an existing folder for creating Melody™ shortcuts. 

Alternatively, you may choose not to create shortcuts as shown below. 
 

 
Figure 7: Melody™ installation – select Start Menu folder for creating shortcuts 

 
f) Click on the Install button, as shown in Figure 7 above. This will start the installation process. 

You should see the Melody installation progress bar, as shown in Figure 8 below. 
 

Copyright © 2010, InterCAX LLC 12



Melody™ R3 • Users Guide 

 
Figure 8: Melody™ installation process 

 
Step 4. Verify installation 

 
a) Open the Melody installation folder located here  

i) Win XP / VISTA: <Rhapsody_Root>\Share\Profiles\Melody. For example, C:\Program 
Files\IBM\Rational\Rhapsody\7.5.1\Share\Profiles\Melody. 

ii) Win 7: C:\Users\<your account>\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody 
 

b) As shown in Figure 9 below, six folders (core, doc, lib, log, models, and xfw) and several .sbs 
files should have been installed.  
 

 
Figure 9: Melody™ installation folder after the installation process 

 
 
 
 

Copyright © 2010, InterCAX LLC 13



Melody™ R3 • Users Guide 

Step 5. Select the core solver for Melody™ 
Melody™ allows users to select Mathematica or OpenModelica as the core solver. 
OpenModelica is a free Modelica-based modeling and simulation tool available as part of the 
OpenModelica Project that is managed by the Open Source Modelica Consortium (OSMC).  
 
Specify the core solver in Melody.ini file (screenshot shown below). 
 
a) Locate Melody.ini file in the folder <Melody_Root>\xfw\conf, for e.g. C:\Program 

Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\xfw\conf\Melody.ini 
b) You will see text as shown in Figure 10. Lines not starting with # character are configuration 

settings. The configuration variables are described in details in section 7.3. 
c) Set the value of the variable com.intercax.xaitools.solver.name equal to 

1. Mathematica to use Mathematica as the core solver 
2. OpenModelica to use OpenModelica as the core solver 

d) Save and close the Melody.ini file.  
e) Skip Step 7 if you have selected Mathematica as the core solver, or skip Step 6 if you have 

selected OpenModelica as the core solver. 
 

Figure 10: Melody.ini file 
 
Step 6. Mathematica installation 
 
If you have selected Mathematica as the core solver in Step 5, you have the following choices: 
 
• During the evaluation period (30 days), you may use our test Mathematica server—see Option 

1 below. 
 

• For long-term or production usage, 
o use Mathematica locally-installed on your machine—see Option 2a below. 
o use Mathematica installed in your enterprise as a web-service via our XWS product—see 

Option 2b below. 
 
 

Copyright © 2010, InterCAX LLC 14



Melody™ R3 • Users Guide 

Option 1. Using our Mathematica test server for short-term evaluation 
 
This Melody™ installation comes with a limited-time access to our Mathematica test server. 
Skip to step 7 and finish the installation process. Then, open and execute example models that 
come with this installation, per instructions in section 3.1. If Melody™ complains about an 
expired Mathematica license key, follows the steps below. Note that your enterprise firewall may 
block access to our test Mathematica server. If this is the case, use OpenModelica as a core 
solver (Step 7). 
 
a) Contact us (melody@intercax.com) for Mathematica test server location and your temporary 

access key. After you receive your access key, follow the steps below. 
b) Open the Melody.ini file. 
c) Set the value of the variable com.intercax.xaitools.local.mathematica.true.or.false to false. This is 

set to false by default (as shown above). 
d) Set the value of the variable com.intercax.xaitools.soap.mathematica.serverhost to the 

Mathematica test server that we provide. 
e) Set the value of the access key variable com.intercax.xaitools.soap.mathematica.accesskey to 

the access key we provide. 
f) Save and close the Melody.ini file. 
 
After this evaluation period, you must have your own Mathematica license (Option 2a) or have 
access to an XWS-based server (Option 2b). Please complete the steps below to configure 
local / network access to your Mathematica license. 
 
Option 2. Using your local installation of Mathematica 
 
If you have a local installation of Mathematica, follow the steps below. Here, local implies (a) 
either on your machine hard drive, or (b) a networked hard drive. 
 
a) Open the Melody.ini file. 
b) Check that the com.intercax.xaitools.local.mathematica.true.or.false variable is set to true in the 

Melody.ini file. By default, this variable is set to false (as shown above). 
c) If you are using Windows OS, ensure that Mathematica is accessible from your machine. 

Type math at the command line on a console. You should see some output such as below 
(for a Windows machine):  

 
C:\>math 
Mathematica 7.0 for Microsoft Windows (32-bit) 
Copyright 1988-2009 Wolfram Research, Inc. 
In[1]:= 
 
If you do not see text similar to above, check that the environment variable “Path” has an 
entry pointing to the root folder where Mathematica is installed (such as C:\Program 
Files\Wolfram Research\Mathematica\7.0 in Windows for Mathematica 6.0 installation). If there 
is no such entry, add the Mathematica root folder location to the “Path” environment variable 
by following the steps below.  

 
i) Right-click on My Computer, and then select Properties. 
ii) Select the Advanced tab. 
iii) Select Environment variables. 
iv) Lookup the Path environment variable in the list of System variables 
v) Select the Path environment variable and click the Edit button. 

Copyright © 2010, InterCAX LLC 15

mailto:melody@intercax.com


Melody™ R3 • Users Guide 

vi) Add the Mathematica root folder location at the end of the variable value field preceded 
by a semi-colon. If the existing entry in the variable value field is abc, then after adding 
the Mathematica root folder location, this field should appear as: 

 
abc;C:\Program Files\Wolfram Research\Mathematica\7.0 

 

Figure 11: Adding Mathematica installation location to the Path environment variable  
 

See the highlighted section of the Variable value field in the snapshot above. 
 

Note: Do not replace the existing value of Variable value field in step above. Only add 
the Mathematica root folder location at the end of the existing value. 

 
d) Save and close the Melody.ini file. 

 
Option 3. Using a Mathematica installation in your enterprise as a web-service 
 
If you have a Mathematica installation in your organization but not accessible locally, and you 
would like to access it remotely to use Melody, please contact us (melody@intercax.com) to 
help you get setup with InterCAX's web-services product (XWS). With XWS, multiple users in 
your organization can access Mathematica solution services and you can manage the access 
keys for your organization. Once you have configured XWS, follow the steps below. 
 
a) Open the Melody.ini file. 
b) Set the variable com.intercax.xaitools.local.mathematica.true.or.false to false. 
c) Set the variable com.intercax.xaitools.soap.mathematica.serverhost to the IP number of the 

machine where XWS is installed, followed by a colon followed by the port number. For 
example, the variable value will look something like: 100.100.100.100:8080 

d) The XWS administrator in your organization will also create an access key for you. Use this 
access key to set the value of the access key variable 
com.intercax.xaitools.soap.mathematica.accesskey. 

e) Save and close the Melody.ini file. 
 
Note: You may change the settings in the Melody.ini file while Rhapsody is running. You do not 
need to restart Rhapsody. However, if the settings are changed while the Melody™ browser is 
running, you will need to close and re-launch the browser. 
 
Step 7. OpenModelica (OM) installation 
If you have selected OM as the core solver in Step 5, follow the steps below for configuring 
OpenModelica for Windows: 

 
a) Download OM 1.5.0 installer (OpenModelica-1.5.0.msi file) from here: 

http://www.openmodelica.org/index.php/download/download-windows 
b) Double click the OpenModelica-1.5.0.msi file. This will install OM on your machine. If you have 

an existing OM installation (older version), you will need to uninstall it first. We recommend 
using the latest version of OM (1.5.0). 

c) Ensure that OpenModelica is specified as the core solver in Melody.ini file (Step 5 above). 

Copyright © 2010, InterCAX LLC 16

http://www.openmodelica.org/index.php/download/download-windows


Melody™ R3 • Users Guide 

d) After successfully completing Step 8 and Step 9 below, open and solve the Addition 
example (see section 3.1). During solving, Melody™ will indicate that it is using 
OpenModelica. Successful solution will indicate that OM is installed and configured to work 
with Melody™. Note that OpenModelica may take some extra initialization time when using it 
for the first time after installation. 

 
Step 8. Place Melody™ license file in the installation folder 
Place the Melody™ license file (Melody.lic) in your Melody installation folder. For example, 
C:\Program Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\Melody.lic 
 
Step 9. Start Rhapsody 
 
Step 10. Verify installation 
Follow the quick start instructions in section 3.1 (first pass). Melody™ is installed correctly if you 
are successful in repeating the steps in these instructions. Otherwise, contact us at 
melody@intercax.com.  

55  USER  DOCUMENTS  U DSER OCUMENTS
This installation comes with a user guide, tutorials, and other examples as described below. 

5.1 Users Guide 
This document is the Users Guide for Melody™ R3 plugin (both Standard and Pro editions). 
This Users Guide is also located here after installation: 

1. Win XP and VISTA - <Rhapsody_Root>\Share\Profiles\Melody\doc\Users_Guide.pdf 
2. Win 7 - C:\Users\<your account>\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody 

5.2 Tutorials 
This installation comes with 5 tutorials. Each tutorial has step-by-step instructions to create a 
valid SysML model that can be solved using this plugin, as described in the Tutorials.pdf 
document. Each tutorial also has a pre-built SysML model with instances that are ready to 
explore and solve. Refer to the Tutorial.pdf document on instructions to execute the models. The 
tutorial models and the Tutorial.pdf document are located under the models\tutorials sub-folder 
folder in the Melody installation folder, for e.g. 
C:\Program Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\models\tutorials\ 
 
The 5 tutorials are: 
1) Addition is a SysML model for learning how to create basic parametric equations.  
2) Satellite is a SysML model of a satellite system. 
3) Orbital is an early-stage orbital mechanics and spacecraft model in SysML that demonstrates 

the use of Melody-Excel connection (section 8.1). 
4) LittleEye is a SysML model of a UAV-based road scanning system named LittleEye that 

demonstrates the use of Melody-MATLAB connection (section 8.3) and trade study 
capabilities (section 9).  

5) PCB is a SysML model of a printed circuit board (electronics) hardware that demonstrates the 
use of complex aggregate relationships and inheritance. 

5.3 Other Examples 
In addition to the tutorial models, this installation comes with 7 example SysML models that are 
ready to explore and solve. Refer to the Other_Examples.pdf document for descriptions of these 
models, and instructions to execute these models. These models and the Other_Examples.pdf 

Copyright © 2010, InterCAX LLC 17

mailto:melody@intercax.com


Melody™ R3 • Users Guide 

document are located under models\other_examples sub-folder in the Melody installation folder, 
for e.g. C:\Program Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\models\other_examples\ 
 
The following example models are available with Melody™: 
 
1) BasicSystem_cMathematica  
2) BasicSystem_MATLAB  
3) Bicycle  
4) Energy  
5) Insurance  
6) Parametrics_PartRefShared_Properties 
7) ProjectPlan  
 
Note that the intent of the tutorial and example models is to present how SysML (Parametrics in 
particular) can be used for different types of problems in different domains. Some models are 
created for demonstration purposes only, and not intended to represent all aspects of the 
systems in the most accurate manner. 

 
Refer to the following publications to learn more. 
1) Peak, R.S., Roger M. Burkhart, Sanford A. Friedenthal, Wilson, M.W., Bajaj, M. and Kim, I. (2007). 

Simulation-Based Design Using SysML Part 1: A Parametrics Primer. The Seventeenth International 
Symposium of the International Council on Systems Engineering, San Diego, California, USA June 24 
-28, 2007. (available at http://eislab.gatech.edu/pubs/conferences/2007-incose-is-1-peak-primer/) 

2) Peak, R.S., Burkhart, R.M., Friedenthal, S.A., Wilson, M.W., Bajaj, M. and Kim, I. (2007). Simulation-
Based Design Using SysML Part 2: Celebrating Diversity by Example. The Seventeenth International 
Symposium of the International Council on Systems Engineering, San Diego, California, USA June 24 
-28, 2007. (available at http://eislab.gatech.edu/pubs/conferences/2007-incose-is-2-peak-diversity/) 

6  SY6 SYSML  MODEL  REQUIREMENTS  ML M RS ODEL EQUIREMENTS
This section consists of a list of modeling requirements that need to be satisfied to use the 
solver capabilities of Melody™ plugin. Some of these requirements are based on limitations in 
Rhapsody for supporting SysML parametrics and instances; some are based on recommended 
practices for enhanced model interoperability; some are to make SysML models less ambiguous 
for the plugin and solvers; while others are limitations of this version of the plugin and solvers. 
These guidelines are followed in the tutorial examples included with this installation. It is 
suggested that a user walks through the tutorials first and then review these requirements for 
better understanding. 

6.1 Structural requirements 
These requirements deal with the model schema and instances created using SysML. In our 
terminology, a schema defines the structure of the model using SysML constructs such as 
blocks, properties, constraint blocks, and parametrics; and an instance model conforms to this 
structure and has values assigned (completely or partially) to its slots (value properties). There 
may be several instance models that conform to a given schema. The schema represents a 
template for defining a family of system alternatives, while each instance model that conforms to 
the schema represents a specific system alternative. Representation of schema and instances 
enables users to define SysML parametrics model once (at the schema level) and use/execute 
it to compute cost, performance, and other system MoEs, verify requirements, and perform 
trades on for different system alternatives (instances). 
 

Copyright © 2010, InterCAX LLC 18



Melody™ R3 • Users Guide 

6.1.1 Model schema requirements 
The following requirements must be satisfied by the SysML schema model for it to be processed 
by Melody™. 

 
1) Melody™ requires that all SysML elements required for defining the schema must be in 

packages.  
 

2) A constraint block should have only one constraint specification. This version of the plugin 
does not support multiple constraint specifications defined in one constraint block. 

 
3) All value properties (attributes) of a block must be typed by a value type (per SysML 

standard). Users may create their own value types or use existing value types (e.g. Real) 
available with the SysML profile in Rhapsody. Attributes with string values must be typed by 
the String value type available with the Melody™ Profile. All value properties, except for 
those typed by the String value type, will be expected by Melody™ to be populated with real 
numbers. 
 

4) All association relationships from one block to another should be navigable only in 1 
direction. Otherwise, it leads to circular references at the block level which is not handled by 
Melody™ - see item 5) in section 0 (Limitations). 

 
5) Per the SysML standard, 

a) Parametric diagrams must be created inside (in the context of) a block. 
b) Binding connectors must be created inside (in the context of) a block. When a user 

creates a binding connector on a parametric diagram in Rhapsody 7.5.2, it is placed 
inside the package owning the context block and not inside the block. With Melody, 
users can easily relocate binding connectors for a single block or for all the blocks in a 
package without having to do it manually. See 7.1 for the command menu 
Melody→Util→Refactor Binding Connectors. 
 

6) Creating parametric models for nested parts and reference / shared properties. 
When a user creates a binding 
connector between value 
properties / constraint 
parameters on a parametric 
diagram, Rhapsody 7.5.2 stores 
the context of both the ends of 
the binding connector. For a 
given end, the context is the part 
property (or the constraint 
property) that owns the value 
property (or the constraint 
parameter) at that end of the 
binding connector. Figure 12 
shows the SourceContext and 
TargetContext for the highlighted 
binding connector. In this case, 
the SourceContext is the part 
property (itsAlpha) that owns end1 
(value property a) of the binding 
connector. The TargetContext is 
the constraint property (Add1) 
that owns end2 (constraint 

Figure 12: Rhapsody populates the end contexts of a binding 
connector for part properties  

Copyright © 2010, InterCAX LLC 19



Melody™ R3 • Users Guide 

parameter addend2) of the binding connector. If no context is specified for an end, it implies 
that the value property at that end of the binding connector is owned by the block in which 
the parametric diagram is created. Note that parametric diagrams must always be created in 
the context of (inside) a block per the SysML standard. 
 
However, Rhapsody populates the end context only if the ends of a binding connector:  

• do not involve nested parts 
• do not involve reference or shared properties 

 
If the ends of a binding connector involve nested parts, Rhapsody 7.5.2 does not populate 
the end contexts. As shown Figure 13, the source context is not populated for the 
highlighted binding connector. As a result, the parametric model is incomplete and 
ambiguous. Melody™ provides a workaround to this problem. Users can apply the 
BindingConnectorContext stereotype to the binding connector and use the tags (sourceContext 
or targetContext) to specify the missing context. As shown in Figure 13, the sourceContext 
tag (provided by Melody™) is set to itsA.itsA1 to indicate the nested part property owning the 
value property v1. The order of parts specified in the context is from outer to inner, e.g. 
itsA.itsA1. The SysML dot notation is used for this purpose. After a user specified the missing 
end context, the parametric model is complete and Melody™ can execute it. 
 

 

Rhapsody does not populate SourceContext

Melody provides a workaround. Users can 
populate the source context and Melody™ 
can execute the parametric model.

Nested property itsA.itsA1

Figure 13: Melody™ provides a workaround for parametric models involving nested parts. 

 

Copyright © 2010, InterCAX LLC 20



Melody™ R3 • Users Guide 

The same problem occurs for parametric models involving reference properties. As shown in 
Figure 14 below, Rhapsody does not populate the target context of the highlighted binding 
connector. The target context is the reference property itsB. Users can specify the target 
context for Melody™, using the same approach as described above. Once this is specified, 
the parametric model is complete and Melody™ can execute it. If the end involves nested 
part / reference / shared properties (or combinations), the SysML dot notation should be 
used (e.g. itsB.itsB1.itsB2) 
 

Reference property itsB

Rhapsody does not populate TargetContext

Melody provides a workaround. Users can populate the target 
context and Melody™ can execute the parametric model.

Figure 14: Melody™ provides a workaround for parametric models involving reference or shared 
properties 

6.1.2 Model instance requirements 
In SysML, block instances are represented using InstanceSpecification. Rhapsody 7.5.2 does not 
support SysML instances. As a workaround, Melody™ provides a special stereotype 
BlockInstance (available with the Melody™ profile) that can be applied to a block to identify it as a 
block instance, as shown in Figure 15a. A tag instanceOf available with this stereotype is used 
for associating an instance to the block that it conforms to. The tag is populated with the GUID 
of the block, as shown in Figure 15b. The Initial Value field of the value properties (attributes) is 
used for populating value properties.  
 

Copyright © 2010, InterCAX LLC 21



Melody™ R3 • Users Guide 

a. Applying BlockInstance stereotype to a block to identify it 
as an instance. 

b. The instanceOf tag is populated with the GUID of the 
classifier block. 

Figure 15: Melody™ workaround for supporting block instances in Rhapsody 
 
Melody™ provides capabilities to automatically generate an instance structure and diagram 
from a given block structure. The Util > Create Instance command (section 7.1) achieves this. 
This utility is described in details in each of the tutorials (Tutorials.pdf). During automated 
instance generation, Melody™ applies the BlockInstance stereotype and populates the instanceOf 
tag. If a user wants to manually create an instance or modify the classifier block, they can do so 
by manually populating/changing the value of the instanceOf tag (Figure 15b). The Util > Copy 
Element GUID command (section 7.1) can be used to obtain the GUID of a block. 
 
The following requirements must be satisfied by the SysML instance model for it to be 
processed by Melody™. 
 
1) A block instance has the same value / part / reference / shared properties as the 

corresponding block. Value properties are populated by specifying a value in the Initial Value 
field. Part / reference / shared properties are populated by setting the property type to other 
block instances. Block instances do not have constraint properties but are instead governed 
by the constraints defined in the corresponding block. 
 

2) All the part / reference / shared properties of a block instance must be populated. Value 
properties with causality “given” must be populated. See the tutorials for details. 
 

3) All value properties must be populated with plain text. For solving purposes, Melody™ 
checks if these values contain numbers.  
 

4) If a value property of a block is connected to the outputs of multiple ONEWAY relations, 
then that corresponding value property in the block instance must have causality “given”. 
This restriction is imposed to prevent instance models from being over-constrained. 
 

5) Causality Verification and Assignment: The truth table below states valid causality 
assignments for value property slots (attributes) in a block instance. The validity of a 
causality assignment is based on whether or not an attribute has value(s). In the table, 
TRUE implies valid assignments and FALSE implies invalid assignments. For example, if an 
attribute has values, then its causality may be “given”, “ancillary”, or “target” but not 
“undefined”. Similarly, if an attribute has no values (empty), then its causality may be 
“undefined” or “target” but not “given” or “ancillary”. 

 
 

 
 

Copyright © 2010, InterCAX LLC 22



Melody™ R3 • Users Guide 

 
Table 1: Truth table for valid causality assignments 

 causality  
If an attribute given  undefined ancillary target 

has values TRUE FALSE TRUE TRUE 
does not have 
values (empty) 

FALSE TRUE FALSE TRUE 

 
Melody™ checks for validity of causality assignments when users attempt to browse SysML 
instance models in the Melody browser. The causality assignment utility in Melody™ 
(Melody→Util→ Add default causalities) assigns default causalities based on this table. 
 

6) When populating aggregate properties (see section 6.6.4), Melody™ requires that the 
names of part / reference / shared properties in the instance model should start with the 
name of corresponding part / reference / shared properties in the schema model followed by 
an underscore (“_”). For example, in section 6.6.4, the part properties of the 
ParkingSpace_at_6AM block instance in Figure 18 are named parkedVehicles_1, _2, and so on. 
These names start with the name of the corresponding part property parkedVehicles (block 
ParkingSpace in Figure 17) followed by an underscrore. Note that this is a workaround by 
Melody™ to model SysML instances (not supported in Rhapsody 7.5.2). 

6.2 Naming requirements 
1) All SysML block elements should have a unique name, even though they are in different 

packages.  
 

2) All SysML blocks, constraint blocks, and properties (part / reference / shared / value) should 
have a name.  

 
3) A block and its parent package cannot have the same name. For example, a block named A 

cannot be owned by a package named A. 
 

4) A block and a package at the same level cannot have the same name. For example, a block 
named B and a package named B cannot be at the same level—owned directly by another 
package. 

 
5) Block properties and constraint parameters should not have names that are reserved math 

keywords. In addition to names of math constants and functions listed in section 5.4, the 
following names are also reserved: binom, str. 

 
6) All SysML model elements should have names that start with an alphabetical character (A-Z, 

a-z).  
 

7) The allowable character classes that can be used in naming model elements are: A-Z, a-z, 
and 0-9. Underscore (“_”) can be used for naming blocks and block properties but not 
constraint properties. 

 
8) The period/dot operator (.) should not be used in naming model elements. Some of these 

limitations are due to math parsers and solvers.  

Copyright © 2010, InterCAX LLC 23



Melody™ R3 • Users Guide 

6.3 Mathematical expression requirements 
1) All value properties that are participating in the parametric model are expected to be 

populated by real numbers within the boundsf specified by Java Double type. 
 

2) All constraint parameters in parametric models must be of value type SysML Real or its 
subtypes. 

 
3) All numeric values in attributes must begin with a numerical character 0-9.  Values 

beginning with a space or decimal point may not be read correctly. 
 

 
4) Mathematical functions should use the syntax defined in section 6.4.  

 
5) A valid mathematical equation (for Melody™) is one that has a single variable on the LHS. 

For example, a=b+c will be processed but users may face issues processing the same 
equation defined as b+c=a. 

 
6) The list of math operators supportedg in Melody are as follows: 

a) Addition (+), Subtraction (-), Multiplication (*), Division (/) 
b) Unary plus (+x), and Unary Minus (-x) 
 

7) It is recommended that large expressions be broken into simpler expressions that are more 
readily solvable by Mathematica and OpenModelica. For example, the expression below 
 
k = (0.577*3.14*E*d) / ln(((1.15*t+D-d)*(D+d)) / ((1.15*t+D-d)*(D-d))) 
 
can be broken into two expressions: 
 
k = (0.577*3.14*E*d) / ln(dummyVariable) 
dummyVariable=((1.15*t+D-d)*(D+d)) / ((1.15*t+D-d)*(D-d)) 

 
Since Melody™ supports only one constraint expression per constraint block, this would 
require you to create two constraint blocks (one for each expression) and to create a dummy 
value property (corresponding to the dummyVariable) in the context block. 
 

In general, the math expression syntax supported by Melody is based on JEPh (with 
extensions). 

6.4 Math constants and functions  
Melody™ currently supports the following math constants and functions that may be used in 
defining constraint specifications.  
 
Some functions are not supported or have a limited support if OpenModelica (OM) is selected 
as the core solver. These functions have comments in blue.  
 
A list of constants is provided below. 
 

                                                 
f http://java.sun.com/javase/6/docs/api/ 
g Note that MelodyTM may not warn if other operators are used. Users should only use the math operators stated 
here. 

h JEP: http://www.singularsys.com/jep/ 

Copyright © 2010, InterCAX LLC 24

http://www.singularsys.com/jep/


Melody™ R3 • Users Guide 

 Name Syntax  Example 
Pi(π) pi y = pi + x 

 
A list of functions is provided below. In principle, several of these functions may be executed in 
different causalities (directions)—computing LHS value(s) for a given set of RHS values, or 
computing RHS value(s) for a given set of RHS and LHS values. In the current version of this 
plugin, these functions and expressions containing these functions are verified to work reliably 
(i.e. give a correct answer) only in the natural causality (computing LHS value from a given set 
of RHS values). Hence, these functions are marked as ONEWAY by default when used in a 
Rhapsody model. If you would like to try solving a function (or the expression it is being used in) 
in the reverse direction, uncheck the ONEWAY mark for that function (or expression) in the 
Relationship Browser section of the Melody browser (see Figure 23 in section 7.2) and press 
Solve. Note that this selection will not be stored in Melody™ settings. This implies that when the 
browser is launched the next time, the ONEWAY marks for these functions need to be 
unchecked again. The two primary reasons for marking these functions as ONEWAY by default 
are: 
1) For large expressions involving several functions, Mathematica may not always return an 

answer when these expressions are evaluated in non-natural directions.  
2) The current version of Melody™ does not support inequalities. Without an inequality 

constraint, some of the functions (esp. trigonometric functions) return a general solution 
instead of a specific solution. For example x=sin(pi/2) will return the general solution x = 
2*n*pi + pi/2. This limitation will be addressed in future release(s) of Melody™. 

 
If OpenModelica is selected as the core solver, none of the functions are marked as ONEWAY. 
However, this may result in an unexpected (but correct) answer if some of these functions are 
solved in different directions (due to lack of support for inequalities). For example, solving 
1=sin(x) will return x=n*1.570 (or n*pi/2) where n is a positive integer not necessarily equal to 1. 
 

Name Syntax  Example 
Sine sin(x) y = sin(x) 
Cosine cos(x) y = cos(x) 
Tangent tan(x) y = tan(x) 
Arc Sine asin(x) y = asin(x) 
Arc Cosine acos(x) y = acos(x) 
Arc Tangent atan(x) y = atan(x) 
Arc Tangent  
(gives the arc tangent of y/x, taking into account 
which quadrant the point (x, y) is in) 

atan2(x,y) z = atan2(x,y) 

Hyperbolic Sine sinh(x) y = sinh(x) 
Hyperbolic Cosine cosh(x) y = cosh(x) 
Hyperbolic Tangent tanh(x) y = tanh(x) 
Inverse Hyperbolic Sine 
Not supported for OM asinh(x) y = asinh(x) 

Inverse Hyperbolic Cosine 
Not supported for OM acosh(x) y = acosh(x) 

Inverse Hyperbolic Tangent 
Not supported for OM atanh(x) y = atanh(x) 

Natural Logarithm (ln(x)) 
(where x is a positive real number) ln(x) y = ln(x) 

Logarithm (logbx) 
(where b and x are positive real numbers) 
For OM, only log (10,x) is supported 

log(b,x) y = log(b,x) 

Exponential exp(x) y = exp(x) 
Absolute Value  abs(x) y = abs(x) 

Copyright © 2010, InterCAX LLC 25



Melody™ R3 • Users Guide 

Random number (between 0 and 1) rand() y = rand()  
Modulus mod(x,y) z = mod(x,y) 
Square Root sqrt(x) y = sqrt(x) 
Power xy pow(x,y) z = pow(x,y) 
Round (rounds argument to the closest integer, or 
the closest even integer for arguments equidistant 
from two integers) 

round(x) y = round(x) 

Ceil (rounds argument to the smallest integer 
greater than or equal to the argument) ceil(x) y = ceil(x) 

Floor (rounds argument to the greatest integer less 
than or equal to the argument) floor(x) y = floor(x) 

Min (returns the argument with minimum value)  
 

min(x1,x2,x3,...) 
For Mathematica, x1,x2,...can 
be arrays or single-valued  
For OM, x1,x2,...can only be 
single-valued 

y = 
min(x1,x2,x3) 

Max (returns the argument with maximum value)  

max(x1,x2,x3,...) 
For Mathematica, x1,x2,...can 
be arrays or single-valued  
For OM, x1,x2,...can only be 
single-valued 

y = 
max(x1,x2,x3) 

Average (returns the arithmetic mean of members 
of the array passed as argument)  

avg(x) 
where x is an array y = avg(x) 

Sum (returns the sum of the members of the array 
passed as argument)  

sum(x) 
where x is an array y = sum(x) 

 

6.5 Conditional Functions and Operators  
Melody™ currently supports conditional statements in the following format. 

 
<Result> = if(<Condition>, <Result if Condition is TRUE>, <Result if Condition is FALSE>)  
 
For example, in the conditional statement  
X2 = if(X1 > 0, X1, -X1)  
 
X2 is set equal to X1 when X1 is positive and –X1 when X1 is negative. Hence, this condition is 
the equivalent of X2 = abs(X1).  

 
The following operators can be used as part of the condition term 

Operator Syntax  Example 
Equal to == y = if(x == 1, 2, 1) 
Not Equal to != y = if(x != 1, 2, 1) 
Greater than > y = if(x > 1, 2, 1) 
Less than < y = if(x < 1, 2, 1) 
Greater than or Equal to >= y = if(x >= 1, 2, 1) 
Less than or Equal to <= y = if(x <= 1, 2, 1) 
AND && y = if(x1 == 0 && x2 < 5, 2, 1) 
OR || y = if(x1 == 0 || x2 < 5, 2, 1) 
NOT ! y = if(!(x>1), 2, 1) 

6.6 Aggregate Properties and Functions  
Melody™ supports primitive aggregates—value properties that contain a list of one or more 
values. For example, in the relation a = avg(b), where a is a single-valued real number and b is 

Copyright © 2010, InterCAX LLC 26



Melody™ R3 • Users Guide 

an array of real numbers, b is a primitive aggregate. Primitive aggregates are manifested in a 
SysML model when a value property is a collection (list) of numbers. Melody™ currently 
supports several types of relations involving primitive aggregates—see below.  
 
6.6.1 Multiplicity 
The default multiplicity for value properties is 1.  In order to hold more than one value, the 
multiplicity of the value property must be set to 1..* , 0..*, or * in the model schema. 
 
6.6.2 Instance Attribute (Slot) Values 
When setting up an instance for solution, values are assigned to attributes (slots) for each 
variable—either Real values for givens or empty values as placeholders for unknowns/targets. 
The values are specified in the Initial Value field of the attribute. Use commas to separate values. 
For example, if an attribute has multiplicity 1..* in the schema and has causality “given” for 
parametric solving purposes, then its values may be specified as 1,2,3,4. If the attribute is a 
target/undefined, then its values may be specified as spaces separated by commas (e.g. , , , ,). 
Users must specify the exact number of values (as numbers or spaces) for all attributes in the 
instance model. A value property must be populated by an array that has all values as givens 
(e.g. 1,2,3,4) or all as undefined/target (e.g. , , , ) but not a combination (e.g. 1,2, ,4) – see item 
8) in section 0.  
 
6.6.3 Aggregate Functions and Operators 
The following function and operators are supported by Melody™ for aggregate values.  
 
Some functions are not supported or have a limited support if OpenModelica (OM) is selected 
as the core solver. These functions have comments in blue.  
 
Function Explanation 

y = a[2] 
a is an aggregate of Real numbers and y is a single Real number; 
y = second item in aggregate a; 
parameterized indices not supported (a[i] not supported) 

y = sum(a) 
a is an aggregate of Real numbers and y is a single Real number; 
y = a1 + a2 + a3 +…  

y = avg(a) 
a is an aggregate of Real numbers and y is a single Real number; 
y = mean of a1, a2, a3,…  

y = standarddeviation(a) 
Not supported for OM 

a is an aggregate of Real numbers and y is a single Real number; 
y = standard deviation of a1, a2, a3,…  

y = variance(a) 
Not supported for OM 

a is an aggregate of Real numbers and y is a single Real number; 
y = variance of a1, a2, a3,…  

y = min(a) 
a is an aggregate of Real numbers and y is a single Real number; 
y = minimum of a1, a2, a3,…  

y = max(a) 
a is an aggregate of Real numbers and y is a single Real number 
y = maximum of a1, a2, a3,…  

x = a     
x and a are aggregates of Real numbers; 
{x1, x2, x3,…} = {a1, a2, a3 …}. Note that the sizes of x and a must be 
same. 

x = a + b 
x, a, and b are aggregates of Real numbers; 
{x1, x2, x3…} = {a1+b1, a2+b2, a3+b3 …}; similar syntax for other math 
operators and functions. Note that the sizes of x, a, and b must be same. 

x = sin(a) 

x and a are aggregates of Real numbers; 
{x1, x2, x3…} = {sin(a1), sin(a2), sin(a3) …}; similar syntax for other 
trigonometric, exponential, logarithmic, and hyperbolic functions. Note 
that the sizes of x and a must be same. 

x = n x is an aggregate of Real numbers and n is a single Real number; 

Copyright © 2010, InterCAX LLC 27



Melody™ R3 • Users Guide 

Not supported for OM {x1, x2, x3…} = {n,n,n…}.  

x = a + n 
Not supported for OM 

x and a are aggregates of Real numbers, and n is a single Real number; 
{x1, x2, x3…} = {a1+n, a2+n, a3+n…}; similar syntax for other math 
operators and functions. Note that the sizes of x and a must be same.  

x = pow(n,a) 
Not supported for OM 

x and a are aggregates of Real numbers, and n is a single Real number; 
{x1, x2, x3…} = {n^a1,n ^a2,n^ a3 …}. Note that the sizes of x and a must 
be same. 

 
Equations may involve both single-valued variables/constants and multi-valued (array) variables 
if Mathematica 7.0 (or higher) is used as the core solver. Examples of such equations are:  
 
1) x = a, where x is an aggregate and a is a single-valued variable  
2) x = a + n, where x and a are aggregates and n is a single-valued variable  
3) x = a + pi(), where x and a are aggregates 
4) x = a + rand(), where x and a are aggregates 
 
If OpenModelica is selected as the core solver, math expressions combining aggregates and 
single-valued variables are not supported. For example x = a + n, where x and a are aggregates 
and n is a single-valued variable, is not supported. 
 
6.6.4 Complex Aggregate Relationships 
Melody™ R3 can execute complex aggregate relationships. A complex aggregate 
relationship is a SysML parametric relation (constraint property) that involves value properties 
owned by aggregate part/reference/shared properties. The term aggregate implies that the 
upper bound of multiplicity > 1, for e.g. multiplicity = 1..* or 0..*. Complex aggregate 
relationships allow users to define parametric models independent of the number of 
complex items (blocks) in a collection. The number of items is specified in the instance 
model. Melody™ executes the complex aggregate relationship for an instance model.  
 
Figure 16 below illustrates a Parking Space system composed of 1 or more parked vehicles 
(e.g. cars, trucks, carts). Figure 17 is a parametric diagram of the ParkingSpace block. The 
spaceCalc constraint property is a complex aggregate relationship since it involves a value 
property (parkingArea) that is owned by a collection—part property parkedVehicles has multiplicity 
1..*. The spaceCalc constraint property is used to compute the parking space occupied by all 
vehicles by summing the parkingArea of n vehicles (where n is undefined at this point). The pcCalc 
constraint property is used to compute the occupationRatio (ratio of occupied space to the 
available space). 
 
Figure 18 illustrates an instance of the ParkingSpace system and represents the parking space at 
6 AM. The parking space has 2 cars, 3 trucks, and 2 carts. Executing the parametric model 
Figure 17 for this instance shows that 24% of the parking space is occupied at 6 AM. Figure 19 
illustrates another instance of the ParkingSpace system and represents the parking space at 9 
AM. The parking space has 4 cars, 5 trucks, and 2 carts. Executing the parametric model Figure 
17 for this instance shows that 41% of the parking space is occupied at 9 AM.  
 
Melody™ requires that the names of part / reference / shared properties in the instance model 
should start with the name of corresponding part / reference / shared properties in the schema 
model followed by an underscore (“_”). For example, the part properties of the 
ParkingSpace_at_6AM block instance in Figure 18 are named parkedVehicles_1, _2, and so on. 
These names start with the name of the corresponding part property ParkingSpace.parkedVehicles 
in the block structure shown in Figure 17. 
 
 

Copyright © 2010, InterCAX LLC 28



Melody™ R3 • Users Guide 

bdd [Package] ParkingSpace [ParkingSpace]

ParkingSpace
«block»

Attributes
availableSpace:Area_sq_m
occupiedSpace:Area_sq_m
percentageOccupied:float

1..*parkedVehicles 1..*parkedVehicles

Vehicle
«block»

Attributes
parkingArea:Area_sq_m

Car
«block»

Truck
«block»

Cart
«block»

 
Figure 16: Parking Space model with aggregate part property (ParkingSpace.parkedVehicles) 

 
par [block] ParkingSpace [AreaCalculation]

occupiedSpace:Area_sq_m
«Attribute»

availableSpace:Area_sq_m
«Attribute»

occupationRatio:float
«Attribute»

ParkingSpace.parkedVehicles:Vehicle1..*

parkedVehicles.parkingArea:Area_sq_m
«Attribute»

spaceCalc:Sum
1 «ConstraintProperty»

Constraints
y=sum(x)

y:Area_sq_m

x[1..*]:Area_sq_m

pcCalc:Division
1 «ConstraintProperty»

Constraints
z=x/y

z:Real

y:Real x:Real

Figure 17: Parametric diagram illustrating a complex aggregate relationship  

Complex aggregate 
relationship 

 
 

Copyright © 2010, InterCAX LLC 29



Melody™ R3 • Users Guide 

bdd [Package] ParkingSpace_at_6AM [ParkingSpace_Inst_Diagram]

ParkingSpace_at_6AM
«block,BlockInstance»

Attributes
«Causality» availableSpace:Area_sq_m=1000.0
«Causality» occupiedSpace:Area_sq_m
«Causality» percentageOccupied:float

Honda_Civic
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=...

parkedVehicles_1parkedVehicles_1

parkedVehicles_2

Toyota_Corolla1
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=30.0

parkedVehicles_2

parkedVehicles_6

C100
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=10.0

parkedVehicles_6

parkedVehicles_7

C200
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=15.0

parkedVehicles_7

parkedVehicles_3

Ford_F150
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=50.0

parkedVehicles_3

parkedVehicles_4

GMC_Sierra
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=60.0

parkedVehicles_4

parkedVehicles_5

Toyota_Tundra
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=50.0

parkedVehicles_5

 
 

Figure 18: Results of executing parametric model for parking space with 7 vehicles — 2 cars, 3 trucks, 
and 2 carts  

Copyright © 2010, InterCAX LLC 30



Melody™ R3 • Users Guide 
bdd [Package] ParkingSpace_at_9AM [ParkingSpace_Inst_Diagram]

ParkingSpace_at_9AM
«block,BlockInstance»

Attributes
«Causality» availableSpace:Area_sq_m=1000.0
«Causality» occupiedSpace:Area_sq_m
«Causality» occupationRatio:float

Honda_Civic
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=2...

parkedVehicles_1parkedVehicles_1

parkedVehicles_2

Toyota_Corolla1
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=30.0

parkedVehicles_2

parkedVehicles_6

C100
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=10.0

parkedVehicles_6

parkedVehicles_7

C200
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=15.0

parkedVehicles_7

Ford_F150
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=5...

parkedVehicles_3parkedVehicles_3

parkedVehicles_4

GMC_Sierra
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=60.0

parkedVehicles_4

parkedVehicles_5

Toyota_Tundra
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=50.0

parkedVehicles_5

Toyota_Corolla2
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=30.0

parkedVehicles_8parkedVehicles_8

parkedVehicles_9

Ford_Fusion
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=30.0

parkedVehicles_9 parkedVehicles_10

GMC_Sierra2
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=60.0

parkedVehicles_10

Toyota_Tundra2
«block,BlockInstance»

Attributes
«Causality» parkingArea:Area_sq_m=50.0

parkedVehicles_11parkedVehicles_11

 
Figure 19: Results of executing parametric model for parking space with 11 vehicles — 4 cars, 5 trucks, 

and 2 carts 
 

Copyright © 2010, InterCAX LLC 31



Melody™ R3 • Users Guide 

6.7 Limitations 
Melody™ R3 has the following limitations with respect to SysML models.  
 
1) OpenModelica (OM) as the core solver — If OM is selected as the core solver, some math 

functions are not supported or have a limited support. These functions are commented in 
blue in sections 6.4, 6.5, and 6.6. 
 

2) Constraint block-related limitations - This version of Melody™ does not support: 
a) multiple constraint specifications in a constraint block. 
b) constraint blocks composed of other constraint blocks. 
c) binding connectors between constraint parameters belonging to two different constraint 

properties. A user must create an additional value property to achieve this. 
d) inequality constraints. 

 
3) Instance-related limitations – Since Rhapsody 7.5.2 does not support SysML instances 

(InstanceSpecification), instances are modeled as blocks with stereotype <BlockInstance> for 
Melody™ to solve parametric models and perform trade studies - see section 6.1.2 for 
details. Though an instance is cognizant of the corresponding block, it is not synchronized 
with the features of that block. If a user adds/removes block properties, or changes their 
names, the instance block will not be automatically updated. This update has to be 
performed manually by the users. Melody™ provides automated instance generation 
capability to avoid potential mistakes in manually creating instances. 
 

4) Value type-related limitations – Attributes with string values must be typed by the String 
value type available with the Melody™ Profile. All value properties, except for those typed 
by the String value type, will be expected by Melody™ to be populated with real numbers 
irrespective of the specific value type used for typing these value properties. Ideally, 
Melody™ would require users to model their custom value types as specializations of the 
Real value type available with the SysML Profile in Rhapsody. Since value types cannot be 
specialized in Rhapsody 7.5.2, this restriction has been relaxed for Melody™ users. 
 

5) Cyclic references-related limitations – This version of Melody does not support some types 
of cyclic references among model schema elements, and among model instance elements. 
Specifically, the following scenarios are not supported:  
a) A block has a property that is typed by the block itself. 
b) Given two blocks, each block has a property typed by the other block (e.g., A.a1 is of 

type block B, and B.b1 is of type block A). 
 

6) Units – Melody™ does not support automated unit conversions in math expressions but it 
provides a validation utility that warns users if the units of value properties or constraint 
parameters connected using binding connectors are incompatible. This validation utility is 
invoked when a user attempts to validate a schema/instance model, or browse/solve an 
instance model. 
 

7) Complex numbers – This version of Melody™ does not support complex numbers. If 
solution results return a complex number for a variable, the string “No Value” is displayed for 
that variable in the Melody™ browser. 

 
8) If a value property is populated with an array in the SysML instance model, all values of the 

array should either be givens (e.g. 1,2,3,4) or undefined/targets (e.g. , , , ) but not a 
combination (e.g. 1,2, ,4). This restriction is primarily due to lack of support for SysML 
instances and slot values in Rhapsody 7.5 and 7.5.1. 

Copyright © 2010, InterCAX LLC 32



Melody™ R3 • Users Guide 

 
9) This version of Melody™ does not support scientific notation for numbers. 
 
10) If you change the causality of a solved target variable to given in Rhapsody and launch the 

Melody™ browser, you may see an over-constrained set of values. Melody does not check 
for over-constrained instance values during validation. To resolve such states, users should 
identify a new target variable and re-solve the model. 

 
11) When you successfully validate the schema/instance structure of a model (see Validate in 

section 7.1), you will receive the message in Figure 20/Figure 21. 
a) The warning is to inform you that this validation function effectively checks the syntax 

and connectivity of the structure of your SysML model schema as far as parametrics 
solving goes.   

b) At this stage Melody™ does not check for over-constrained equations and similar non-
syntactic issues. In general the math solver (invoked via the Melody™ Browser) will 
uncover such issues usually by returning a “No Value” result or an over-constraint 
warning.  
 

Figure 20: Structure validation notice and warning Figure 21: Instance validation notice and warning 
 

 
Figure 22: Warning regarding previously solved instance values. 

 
12) When you open an existing instance model in Rhapsody for browsing (see Browse in section 

7.1) you will see the warning message in Figure 22 if that instance model has values 
populated for any attributes with causality “target” or “ancillary”. This situation exists 
because you have stored previously solved values in the SysML model.  Usually it is not a 
problem and you can browse the instance to review its results without concern (if you fully 
control the model and know its change history), but in general we recommend re-setting the 
instance and re-solving it to be safe.   
 

13) There are several ways that previously solved instance values can become invalid, because 
the instance in Rhapsody is not continuously connected to the instance in the Melody™ 
browser), including: 
a) Someone changed the corresponding schema structure in Rhapsody after that instance 

was solved (e.g., they added a new equation or changed an existing equation). 
b) Someone changed an attribute value or causality in the instance in Rhapsody.  In 

general we recommend not making such changes in Rhapsody for a previously solved 
instance. Instead, open the Melody™ browser, make such changes, and then update the 
SysML model.  

 

Copyright © 2010, InterCAX LLC 33



Melody™ R3 • Users Guide 

In other words, for example if you make structural changes to your SysML model schema, 
such as redrawing the connectors in a parametric diagram, you can still browse the old 
solved instance (conforming to the schema before changes) in Melody™. With the changes 
in the model, the values in old instances may be non-conformant to the model schema. This 
version of Melody™ does not automatically re-solve (update) old instances to conform with 
the new schema. It is recommended that after structural changes to the model schema, 
users should (a) re-validate the schema, (b) open the Melody™ browser, (c) Reset all non-
given values (automatically by pressing the Reset button), and (d) solve the instance again.  

 
14) Mathematica solving issues: 

a) If a system of equations is under-constrained, Melody™ browser shows that no value is 
available for one or more target variables after solving. It does not explicitly warn the 
user that the system of equations was under-constrained. 

b) In some cases, while solving a large system of equations in the reverse direction (non-
natural direction), Mathematica returns an over-constrained set of values (without 
exceptions or warnings). Contact us (melody@intercax.com) for further information. 

7  P7 PROGRAM  FEATURES  FROGRAM EATURES

7.1 Command Menus 
Melody™ commands are applied by right-mouse-clicking on the appropriate block or package in 
the Rhapsody model tree and selecting the menu item Melody. The list of commands and their 
description is below. 
 

Command Description 
 
Validate 

 
• Validates the block structure (schema model) when invoked on a block. This 

command validates the specific block on which it is invoked, and recursively 
validates: (1) all blocks related as part, reference, and shared properties, 
and (2) all constraint blocks related as constraint properties. 
 

• Validates the block instance structure (instance model) when invoked on a 
block instance. This command validates: (1) the block corresponding to the 
instance, and all related blocks in a recursive manner (as above), and (2) the 
block instance and all related instances in a recursive manner. 
 

 
Browse 

 
Launches the Melody™ browser (see section 6.2) to browse and solve the 
block instance (and related instances) on which it is invoked. The Browse 
command performs several functions when invoked on an instance model. 
 
• Validates the schema model for the instance model (as done by the Validate 

command) 
 

• Validate the instance model (as done by the Validate command) 
 

• Launches the Melody™ browser for the instance model 
 

 
Util →  
Create Instance 

 
Creates an instance structure and diagram (BDD) for a given block. When 
invoked on a block, this command instantiates the given block and all its part / 

Copyright © 2010, InterCAX LLC 34



Melody™ R3 • Users Guide 

reference / shared properties recursively to create an instance structure. It also 
creates a block definition diagram showing the instance structure (newly 
created instances and relationships among them). 
 

 
Util → 
Assign default 
causalities 

 
Assigns default causality to instance slots (attributes of block instances). 
Attributes that have been assigned a value are tagged as given, and attributes 
without values are tagged as undefined.  At least one variable must be assigned 
manually as target to solve the model.  
 

 
Util →  
Select Instantiated 
Block 
 

 
Selects the classifier block when invoked on a block instance. The classifier 
block is the block that was instantiated to create the block instance. 
  

 
Util →  
Copy Element GUID 

 
Copies the GUID (unique identifier of the element in Rhapsody) to the clipboard 
and also shows it in the log window, when invoked on any element in the model 
tree 
 

 
Util →  
Refactor Binding 
Connectors 
 

 
• Moves all binding connectors related to a block from their current location in 

the model to inside the block, when invoked on a block.  
 

• Performs the above for all blocks in a package when invoked on a package. 
 

 
Util → Add Instances 
to Aggregate Property 
 

 
Adds instances to populate an aggregate part, reference, or shared property 
when invoked on the property. 

 
Excel → Setup 

 
Launches the Excel setup utility to connect block/instance attributes to Excel 
spreadsheets. See Table 2 for details. 
 

 
Excel → Read from 
Excel 

 
Reads values from Excel spreadsheet(s) into the SysML model in Rhapsody. 
See Table 2 for details. 
 

 
Excel → Write to Excel 

 
Writes values from SysML model in Rhapsody to Excel spreadsheet(s). See 
Table 2 for details. 
 

 
Trade Study → Setup 
 

 
Launches the trade study setup utility for specifying number of scenarios. 
 

 
Trade Study → Run 

 
Runs a trade study.  
 

 
Help → About Melody 

 
Provides information about your Melody™ installation. 
 

 
Help → Users Guide 

 
Launches the Melody™ Users Guide which is located in the doc folder under 

Copyright © 2010, InterCAX LLC 35



Melody™ R3 • Users Guide 

your Melody™ installation, for e.g.  
C:\Program 
Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\doc\Users_Guide.pdf 
 

 
Help → Tutorials 

 
Launches the Melody™ Tutorials document which is located in the 
models\tutorials folder under your Melody™ installation, for e.g.  
C:\Program 
Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\models\tutorials\Tutorials.pdf

7.2 Browser 
The Melody™ browser displays the parametric model variables and controls for solving and 
displaying the variable values.  An example of the browser window is shown in Figure 23 below. 
 

 
 
Variable Browser  
(shown in expanded 
form) 

Toolbar 

Relationship Browser 
 

Figure 23:  Melody™ Browser   
7.2.1 "Solution in progress" Window 
When the Solve button on the browser is clicked, Melody™ orchestrates the solution of the 
network of parametric equations using solvers (such as Mathematica, OpenModelica, and 
MATLAB).  During this interval, a Solution in progress window is displayed, as shown in Figure 24 
and Figure 25 below. 

Copyright © 2010, InterCAX LLC 36



Melody™ R3 • Users Guide 

Figure 24: Solution in progress window when 
using local Mathematica 

Figure 25: Solution in progress window when using 
remote Mathematica  

 
The Cancel button causes Melody™ to ignore any intermediate results returned from 
Mathematica, to reset the model values (same as pushing Reset), and to return to the ready-to-
solve condition.  It does not necessarily affect the solver (e.g. Mathematica) directly, i.e., the 
solver job may continue to execute, in which case Melody™ will ignore any results it obtains.   
 
If the solver job itself hangs, it may require manual intervention before you can continue 
successfully solving models via Melody™.  To cancel a solver job, consult your solver’s Users 
Guide (for local solver installation) or contact your server administrator (for an XWS/web 
services-based solver installation). 
 
7.2.2 Variable Browser 
Each variable is shown with Name, Type, Causality and Value.  Variable causality can be 
changed in the browser window by clicking on the causality type and selecting from the list.  
Four possibilities are available for Causality. A user can only specify causality to be Given, 
Undefined, or Target. If a variable with initial causality Undefined is used to compute other 
variables with during solution, its causality will automatically change to Ancillary after solving. 
 
Command Description 
 
Given 

 
Value is assigned before solving 
 

 
Undefined 

 
Value may be calculated during solving if it is needed to determine a Target, 
directly or indirectly. 
 

 
Target 

 
Value is calculated during solving (if Mathematica can find a valid solution).  At 
least one unknown must be assigned as a target variable to initiate the solution 
process. 
 

 
Ancillary 

 
A variable whose value is calculated during solving and used to calculate the 
value of another variable.  The value of this variable is not available before 
solving.  
 

 
The value of a Given variable can be changed by clicking on its value and editing it.  All other 
variables must be changed to Given before they can be edited (see 7.2.5 for more about this). 
 
The size of the Variable Browser window may be expanded by 1) dragging down the lower 
border of the Browser window, followed by 2) dragging down the horizontal black line between 
the Toolbar and Relationship Browser. 
 

Copyright © 2010, InterCAX LLC 37



Melody™ R3 • Users Guide 

7.2.3 Toolbar 
The commands available via the Toolbar are described below. 
 
Command Description 
 
Expand 
 

 
Expands all blocks in the variable browser one tree level per button click 

 
Collapse All 

 
Fully collapses the tree structure of the variable browser 
 

 
Reset 
 

 
Resets the values of all target and ancillary variables in a solved 
instance, and changes the causality of ancillary variables to undefined 
 

 
Solve 
 

 
Exports the model to Mathematica/OpenModelica for execution and 
displays the results in the Browser window after solving is complete 
 

 
Update to SysML 
 

 
Causes the results in the Browser window to be exported to the SysML 
instance in Rhapsody 
 

 
7.2.4 Relationship Browser 
The Relationship Browser displays the constraint equations present in the parametric model and 
shows their current status during solution. By selecting one of the blocks in the Variable 
Browser, e.g. itsLittleEyeAircraft in Figure 23, the equations specific to that part of the model are 
displayed in the Relationship Browser. 
 
The checkbox in the Active column allows individual equations to be “turned off” during solving, 
i.e. not exported to Mathematica/OpenModelica.  This may prevent other parts of the parametric 
model from being solved. 
 
The columns Local and Oneway refer to local vs. inherited characteristics and static causality 
characteristics of the equations.  These are not user-controlled via this browser—they are 
determined by the structure of the model, which the user can change in Rhapsody and then re-
open in the Melody™ browser to see the updated Local or Oneway properties. 
 
7.2.5 Editing an Instance in the Browser Window 
Attribute values and attribute causalities can be modified within the Browser window, as well as 
in the SysML instance diagram before launching the browser. Note that editing the SysML 
instance after the Browser is launched will not update the Browser.  Changing either a value or 
causality in the Browser after a solution has been calculated will return the model to an 
unsolved state, which can then be solved with the changed parameters. 

7.3 Melody.ini file 
The Melody.ini file provides settings to control Melody™ behavior. The file is located here: 
<Rhapsody_Root>\Share\Profiles\Melody\xfw\conf.  
 

Copyright © 2010, InterCAX LLC 38



Melody™ R3 • Users Guide 

The role of each variable and the format for specifying its values are described below. If there 
are restrictions on the values allowed for a variable, these are specified in the following format: 
Variable name = allowable value 1 / value 2 / … 
 
1) com.intercax.xaitools.solver.name = Mathematica / OpenModelica 

 
This variable is used to specify if Melody should use Mathematica or OpenModelica as the 
core solver. Allowable values for this variable are Mathematica or OpenModelica. 
 
 

2) com.intercax.xaitools.local.mathematica.true.or.false=true / false 
 
This variable is used to specify if Melody should use local or remote Mathematica. Set value 
= true for local Mathematica, or false for remote Mathematica (via XWS). If the value is set to 
false, ensure that you specify the location of remote Mathematica 
(com.intercax.xaitools.soap.mathematica.serverhost) and the access key 
(com.intercax.xaitools.soap.mathematica.accesskey). Contact your XWS administrator for access 
to remote Mathematica. For information on remote Mathematica (via XWS), refer to Step 5 
in section 4.2. 
 

3) com.intercax.xaitools.solver.timeout.in.seconds = 180 
 
This variable is used to specify the time interval in seconds—measured after pressing the 
Solve button in the Melody browser—after which Melody will disconnect from the external 
solver (e.g. Mathematica or MATLAB). Note that this will not kill the solver runtime process. 
However, Melody will not wait for the solution results. By default, the value of this variable is 
set to 180 seconds (3 mins). If you estimate your problem will take longer to solve, increase 
the value of this variable accordingly. If you do not want Melody to timeout, specify a value 
less than 0. For example, setting the value as -1 will ensure that the solution process is not 
timed out. 
 

4) com.intercax.xaitools.soap.mathematica.serverhost = IP address:port number 
 
This variable is used to specify the location of remote Mathematica installation. Values are 
specified in the following format: IP number (or alias): port number. For information on 
remote Mathematica (via XWS), refer to Step 5 (Option 3) in section 4.2. 
  

5) com.intercax.xaitools.soap.mathematica.accesskey = someKey 
 
This variable is used to specify the access key for the remote Mathematica installation. For 
information on remote Mathematica (via XWS), refer to Step 5 (Option 3) in section 4.2. 
  

6) com.intercax.xaitools.temp.dir= temp 
 
This variable is used to specify the location of temp folder where the Mathematica job is 
created and interim results are stored during the solution process. The location is specified 
relative to the xfw folder — <Rhapsody_Root>\plugins Share\Profiles\Melody\xfw. 
 

7) RetryInvervalInMilliSeconds = 1000 
 

When using remote Mathematica (via XWS) network issues or other problems may hinder 
Melody™ from connecting to Mathematica. This variable is used to specify the time interval 
(in milliseconds) after which Melody™ will retry connecting to Mathematica.   

Copyright © 2010, InterCAX LLC 39



Melody™ R3 • Users Guide 

 
8) NumberOfRetry=1 

When using remote Mathematica (via XWS) network issues or other problems may hinder 
Melody from connecting to Mathematica. This variable is used to specify the number of 
times Melody™ should retry connecting to Mathematica. 
 

9) xws.urn.version = urn:XWS_v2.2 
 
This variable is used to specify the XWS service used for connecting to remote 
Mathematica. For information on remote Mathematica (via XWS), refer to Step 5 (Option 3) 
in section 4.2. 
 

10) maxNumberOfDecimalsToDisplay = -1 
 
This variable is used to specify the max number of decimal places to display for values in 
the Melody™ browser. If the default value (-1) is specified, location-specific default settings 
will be used, for e.g. displaying 3 decimal places in US. 

8  C8 CONNECTIONS  TO  EXTERNAL  TOOLS    E TONNECTIONS TO XTERNAL OOLS

                                                

8.1 Melody™ - Excel Connection 
The Melody™ - Excel Connection (MEC) allows users to read/write slot values from/to Microsoft 
Excel files. This enables users to populate instances values from Excel workbooksi before 
solving the model in Melody™, and export solved instance values to Excel workbooks. Hence, 
Excel spreadsheet-based templates can be used with Melody™ in a sequential manner. For 
example, users may compute some parameters using spreadsheets, read these values in 
Rhapsody to populate some SysML value properties (attribute), solve the SysML model using 
Melody™, and export solved values to spreadsheets.  
 
The Satellite tutorial provided with Melody™ is an example usage of the MEC feature. It is 
located under <Rhapsody_Root>\Share\Profiles\Melody\models\tutorials\Satellite. 
 
MEC can be invoked on both blocks and instances—blocks with stereotype BlockInstance—in 
Rhapsody. This allows users to take advantage of MEC’s capabilities even if they are not using 
Melody’s parametric solving capabilities.  
 
The operations, features, and limitations of MEC are described below in sections 8.1.1, 8.1.2, 
and 0 respectively. 
 
Note: It is recommended that you first try this feature (esp. Excel write operation) on a backup 
copy of your spreadsheet before trying it on a spreadsheet for production usage. This will 
ensure that you are aware of the updates that the feature performs on your spreadsheet. 
 
 
 
 
 
 
 
 

 
i The terms Excel file and Excel workbook mean the same. 

Copyright © 2010, InterCAX LLC 40



Melody™ R3 • Users Guide 

8.1.1 Operation 
Follow the steps below to use MEC to connect your SysML models to Excel spreadsheets. 
 
Step 1. Setup attributes to interact with Excel worksheet 
 
To setup attributes to interact with Excel, right click on the attribute (or its parent block) in 
Rhapsody’s model tree and select Melody→Excel→Setup, as shown in Figure 26 below. Once the 
Setup menu is selected, Melody Excel Setup utility appears, as shown in Figure 27 below.  

 
Figure 26: Setup Excel connection for attributes 

 

Copyright © 2010, InterCAX LLC 41



Melody™ R3 • Users Guide 

 
Figure 27: Melody Excel Setup utility  

 
The setup utility shows the entire block structure (part/reference/shared properties) for the 
selected block (or the block owning the selected attribute). If the setup utility was invoked on 
an attribute, then that attribute is shown highlighted in the model tree shown in the setup 
window. Users can now click on specific attributes and link them to Excel spreadsheets. If 
an attribute has already been connected to Excel, the connection information will be shown 
in the setup utility. 
 
The setup utility can also be invoked on packages. See section 8.1.2 for details. 
 

Step 2. Specify Excel connection for attributes 
 

Specify Excel connection information for all attributes that need to be linked to Excel 
spreadsheets. To do this, repeat steps a-f below for each such attribute. 

 
a) Select the attribute in the setup window (as shown in Figure 27). 

 
b) Specify the location of the Excel workbook associated with the attribute in the Workbook 

File field. If the workbook file is located in the same folder as the Rhapsody model file 
(.rpy), only the name of the workbook file needs to be specified (with the extension .xls or 
.xlsx). Alternatively, click the Browse button to select the workbook file. Note that storing 
Excel workbooks with the Rhapsody file enhances the portability of the model. The 
Rhapsody model file and the workbook files can be distributed together without system-
specific folder location settings. 

 
c) Select the worksheet associated with the attribute. If you selected the workbook file 

using the Browse button, the list of spreadsheets in that file is automatically available for 
selection. However, if you manually entered the workbook file, click on the Refresh button 
to populate the list of spreadsheets in the workbook file. Note that if the workbook file is 
not found, the list of available worksheets will be empty.  
 
If multiple attributes of a block are to be linked to the same workbook and worksheet, it is 
preferable to specify workbook and worksheet information at the block level and then 

Copyright © 2010, InterCAX LLC 42



Melody™ R3 • Users Guide 

select the Use Default Worksheet option for all such attributes. Figure 28 below shows an 
example where the Excel workbook and worksheet is specified for the block Part_A. The 
attribute wA (owned by this block) uses the worksheet. 
 

Excel worksheet specified for the instance Slot uses the default worksheet  
Figure 28: Specifying workbook and worksheet at the instance level and using it for slots 

 
d) Specify the cell range (in the selected worksheet) associated with the slot. Cell range 

can be specified using cell name or address.  
 

If the cell range is specified using a name, the following rule applies: 
 
i) The scope of the name should be the worksheet and not the workbook. For example, 

cell range C6:C15 in Sheet1 is named as PowerUsage. The scope of this name is the 
worksheet Sheet1. Figure 29 below shows an Excel dialog to name cell ranges. 

Figure 29: Naming cell ranges in Excel 
 
If the cell range is specified using cell address, the following rules apply: 
 
i) Cell range must be specified using the following Excel syntax: 

(1) for multi-valued attributes: <first cell address>:<last cell address>. For example, if a 
multi-valued attribute is to be associated with cells from A2 to A10, cell range 
should be specified as A2:A10. 

(2) for single-valued attributes: <cell address>. For example, if a single-valued 
attribute is associated with cell A2, cell range should be specified as A2. 

ii) Cell ranges must be specified without the worksheet reference. For example, cell 
range A2 to A10 in MySheet worksheet should be specified as A2:A10 and not as 
MySheet1!A2:A10. 

iii) A cell range should not have special characters (including whitespaces) that Excel 
cannot recognize. The following are examples of syntactically incorrect cell ranges: 
A2 : A10, A 2 : A 10, A$%2:A*9 

iv) For associating an attribute to an Excel spreadsheet using MEC, cell ranges must be 
contiguous and correspond to a single column/row. For example, A2:A10 and A2:F2 

Copyright © 2010, InterCAX LLC 43



Melody™ R3 • Users Guide 

are contiguous and correspond to single column and row cell ranges respectively; 
A2:B10 is a contiguous but not a single column/row cell range; and A2:A10,C2:C10 is a 
valid but non-contiguous cell range. 

v) MEC ignores the order in which the first and last cells are specified in the cell range 
field. For example, A10:A2 is treated the same as A2:A10. 

 
e) Specify the access mode (Read or Write).  

 
If the Access Mode=Read, ensure that the workbook file is saved before the Excel Read 
operation is executed. If Access Mode=Write, ensure that the workbook file is closed 
before the Excel Write operation is executed. As shown in Figure 27, attributes that are 
setup to read from spreadsheets are shown in blue and attributes that are setup to write 
to spreadsheets are shown in red.  
 

f) Press the Apply button to save slot setup information to the Rhapsody model. Those 
attributes for which the Excel connection settings have been changed but not saved to 
the Rhapsody model (Apply button) are shown in italics. 

 
The table below summarizes the commands that can be issued from the MEC setup window. 
Command Description 
 
Browse 

 
Opens a file browser for selecting an Excel workbook file (.xls or .xlsx) 
 

 
Refresh 

 
Creates a list of spreadsheets available in the specified workbook file 

 
Apply 

 
Saves the Excel connection settings to the Rhapsody model 
 

 
OK 

 
Saves the Excel connection settings to the Rhapsody model (Apply) and 
closes the setup utility 
 

 
Clear 

 
Removes the Excel connection settings for the subject slot 
 

 
Cancel 

 
Closes the MEC setup utility without saving the Excel connection settings 
 

 
Step 3. Execute Excel Read / Write operation on attributes 
 

Once an attribute is connected to Excel, read/write operations can be executed by right 
clicking the attribute and selecting Melody→Excel→Read from Excel or Write to Excel menus. 
When the read/write operation is executed successfully, corresponding information 
messages pop-up as shown in Figure 30. 
 
During the Excel Read operation, the causality of all instance model attributes read from 
Excel is automatically changed to “given” (from “undefined”) in accordance with Table 1. 
Once an attribute has been connected to an Excel worksheet, the Excel read/write 
operations can be invoked whenever new values are to be read from (or written to) the 
Excel worksheet. 

Copyright © 2010, InterCAX LLC 44



Melody™ R3 • Users Guide 

MEC message for successfully reading attribute values from Excel 
 

MEC message for successfully writing attribute values to Excel 
 

Figure 30: Information messages for successful execution of MEC read/write operations 
 

Steps 1-4 above demonstrate the operation of MEC in Melody™ for attributes. Additional 
steps for more efficient operation of MEC are described below. 

 
Step 4. Execute Excel Read/Write operation for a block/ instance or a schema/instance 

package 
 

Excel read/write operations can be invoked for an attribute (as demonstrated above), a 
block/instance, or a schema/instance package. To invoke Excel Read/Write operation on an 
block/instance (or block/instance package), right click the block/instance (or block/instance 
package) and select Melody→Excel→Read from Excel or Write to Excel menu.  
 
If the Excel Read operation is invoked on a block/instance, MEC will execute the Excel 
Read operation for all attributes of that block/instance that are setup to read from Excel 
(Access Mode=Read). Similarly, if the Excel Write operation is invoked on a block/instance, 
MEC will execute the Excel Write operation for all slots of that instance that are setup to 
write to Excel (Access Mode= Write).  
 
If the Excel Read/Write operation is invoked on a block/instance package, MEC will perform 
the Excel Read/Write operation for all blocks/instances in the instance package. 

 
Step 5. Initializing slots with empty values before solving with Melody. 
 

If a slot value is intended to be a target or an undefined variable for Melody solution, users 
are still required to initialize the slot (as shown in step 1 above). If the slot value is an array, 
then n values of that slot must be initialized (where n is the array size). This can be a 
cumbersome process. Using PM-EC, users can initialize a slot with n empty values by 
setting them up to read values from n empty cells in an Excel spreadsheet and then 
executing the Excel Read operation. If the slot values do not have any pre-assigned 
causality, the Excel Read operation will set their causality to "undefined". For those empty 
values that are the targets, users can change the causality from “undefined” to “target” in the 
Melody browser. 
 

Copyright © 2010, InterCAX LLC 45



Melody™ R3 • Users Guide 

The table below summarizes the PM-EC commands, the arguments on which these 
commands may be issued, their behavior, and the response message on successful 
execution of commands. These commands are available under Melody→Excel menu. 
 

Table 2: Commands for Melody™ - Excel Connection 
Comm
and 

Arguments 
(Invoked on) 

Description Messages 

Setup Attribute Opens the Excel Setup utility for 
the block owning the attribute, and 
the subject attribute is shown 
highlighted. 
If the block is a part of a system 
model (schema), then the setup 
utility is launched for the root block 
and the subject attribute is shown 
highlighted. 
 After the Apply (or OK) button 

is pressed, the setup values 
are saved to the model. No 
messages pop-up after the 
save operation is completed. 

Block or 
Instance 

Opens the Excel Setup utility for 
the block/instance.  
If the block is a part of a system 
model (schema), then the setup 
utility is launched for the root block 
and the subject block is shown 
highlighted. 
 

Package Opens the Excel Setup utility for 
the root block or root instance in 
the package.  
 

Read Attribute Reads values from an Excel 
spreadsheet and populates 
attribute values if Excel access 
mode=Read.  
 
If the attribute is owned by an 
instance, the causality is set to 
"given" after reading values from 
Excel. 

• If attribute values are read 
successfully from Excel and 
the causality assignment is 
successful, the response 
message states "Successful 
in reading values from Excel 
and assigning default 
causalities."  
• If attribute values are 
successfully read from Excel 
but the causality assignment 
is unsuccessful, the response 
message states “Successful 
in reading values from Excel 
but unsuccessful in assigning 
causalities." 
• If attribute values are not 
read from Excel, response 
messages (indicating the 
problems) are shown in the 
Rhapsody Log window. 

Block/Instanc
e 

Executes the Excel Read 
operation for all attributes directly 
owned by the block. 

A successful response 
message is show only when 
the Excel read and causality 

Copyright © 2010, InterCAX LLC 46



Melody™ R3 • Users Guide 

 
If invoked on an instance, the 
causalities of all attributes, whose 
values are read from Excel, are 
set to "given". 
 

assignment operation is 
successful for all attributes 
(with read access mode) in 
the block/instance. Else, no 
response message is shown. 

Package Executes the Excel Read 
operation for all attributes of all 
blocks/instances in the package.  
 
If invoked on an instance 
package, the causalities of all 
attributes (of all instances in the 
package), whose values are read 
from Excel, are set to “given”. 
 

A successful response 
message is shown only when 
the Excel read and causality 
assignment operation is 
successful for all attributes of 
all blocks/instances in the 
instance package. Else, no 
response message is shown. 

Write Attribute Writes attribute values to an Excel 
spreadsheet if Excel access mode 
= Write for that attribute. 

• If attribute values are 
successfully written to Excel, 
the response message states 
"Successful in writing values 
to Excel".  
• If attribute values are not 
written to Excel, response 
messages indicate the 
problem. 

Block or 
Instance 

Executes the Excel Write 
operation for all attributes directly 
owned by the block. 

A successful response 
message is shown if the 
Excel Write operation is 
successful for all attributes of 
the block/instance. 

Package Executes the Excel Write 
operation for all attributes of all 
blocks/instances in the package. 

A successful response 
message is shown only if the 
Excel Write operation is 
successful for all attributes of 
all blocks/instances in the 
package. 

 
8.1.2 Features and Specific Behavior 
1) Both versions of MS Excel files are supported—Excel 97-2003 files (.xls extension) and 

Excel 2007 files (.xlsx extension). 
 
2) Excel Read/Write operations can be invoked for an attribute, a block/instance, or a package 

containing blocks/instances. 
 
3) Excel Read/Write operations can be performed for both numerical and string values. If a 

value property (attribute) connected to Excel is typed by the String value type (available in 
the Melody™ Profile), text-based values can be read from a spreadsheet to that attribute 
and vice versa. However, if a value property is typed by any other value type (not String), 
only numerical values can be read successfully from a spreadsheet to that attribute and vice 
versa. In this case, non-numeric values read from Excel will be shown as null in the Initial 
Value field of that attribute. 

 

Copyright © 2010, InterCAX LLC 47



Melody™ R3 • Users Guide 

4) MEC operations are one-time read/write operations and not a live connection. If values in 
Excel workbooks (associated with attributes in Rhapsody) are updated, the Read operation 
must be re-invoked on all attributes to read updated values after the Excel spreadsheet has 
been saved. Similarly, if attribute values in the SysML model (associated with values in 
Excel workbooks) are updated, the Write operation must be re-invoked to write updated 
values from the SysML model to Excel spreadsheets after the workbooks have been closed. 

 
8.1.3 Limitations 
1) The Excel workbook needs to be closed before the Excel Write operation is invoked on an 

attribute or block/instance or package. 
2) The Excel Write operation will not create a new workbook file if it does not exist. 
3) MEC ignores the order in which the first and last cells are specified in the cell range field. 

For example, A10:A2 is treated the same as A2:A10. 
 

Note: Although MEC is designed to ensure that existing features in Excel workbooks, such as 
charts, formulas, macros, and pivot tables, are preserved when reading and writing values 
from/to workbooks, users are recommended to first use MEC on a copy of their original 
workbooks and test if the MEC Read/Write operations preserve the specific features in their 
workbooks. 

8.2 Melody™ - Custom Mathematica Connection (available only with 
Melody™ Pro) 

The Melody - Custom Mathematica connection (a.k.a cMathematica) exposes the full power of 
Mathematica to Melody™ users through the cMathematica function.  This allows “wrapping” of 
both pre-defined and user-written Mathematica functions—saved as .m files in the Mathematica 
Autoload folder—as constraint blocks. Nine pre-defined graphing functions and three statistical 
functions are included with MelodyTM.  Users can create as many custom functions as desired if 
they have familiarity with Mathematica function programming and access to the Mathematica 
directory structure. The canonical form of the constraint expression is as below and it would be 
used in a parametric diagram as shown in Figure 31 
 

output parameter = cMathematica(function name, input arguments) 

mass:Real
«Attrib ute»

BasicSystem.plotmass:cMathPlotXMass
1 «ConstraintProperty»

Constraints
c1

flag:Real

x:Real

plotResult1:Real
«Attrib ute»

c1: flag = cMathematica(ICAXBarChartX, x, 
"Mass_vs_Time", "Time", "Mass")

 
Figure 31:  Constraint expression using cMathematica function in a parametric diagram 

 

Copyright © 2010, InterCAX LLC 48



Melody™ R3 • Users Guide 

The figure above shows a usage of the constraint block (cMathPlotXMass) as a constraint 
property (plotmass) of the block BasicSystem. The constraint c1 of the constraint block 
cMathPlotXMass has the following specification in the Rhapsody SysML model.  
 

flag = cMathematica(ICAXBarChartX, x, "Mass_vs_Time", "Time", "Mass") 
 
For illustration purposes, this is also shown as a note anchored to the constraint property in the 
parametric diagram.  
 
A template constraint block for cMathematica functions is available with Melody’s Constraint 
Block Library as below. 
Melody::Constraint_Block_Library::External_Functions::Mathematica::cMathematica_Function 
 
The BasicSystem_cMathematica example model in your Melody™ installation demonstrates this 
feature. This model is included in the models\other_examples folder of your Melody™ installation, 
for e.g.  
C:\Program Files\IBM\Rational\Rhapsody\7.5.2\Share\Profiles\Melody\models\other_examples 
 
This model is described in the Other_Examples.pdf document which is located in the same folder. 
 
8.2.1 Installation 
A library of pre-defined Mathematica graphing and statistical functions is provided with 
Melody™. After MelodyTM installation, this library is located here: 
<Rhapsody_Root>\Share\Profiles\Melody\xfw\conf\ICAX.zip. If you are using local Mathematica, right 
click on the ICAX.zip file and extract it to <Your Mathematica Installation>\SystemFiles\Autoload 
folder. For example, if you have local Mathematica version 7.0 on your Windows machine, 
extract ICAX.zip to C:\Program Files\Wolfram Research\Mathematica\7.0\SystemFiles\Autoload. If you 
are using XWS-based Mathematica, ask your system administrator to extract ICAX.zip to your 
Mathematica server installation. If you are evaluating MelodyTM using our test server, then you 
do not need to follow this step.   
 
Note: After extracting ICAX.zip file to C:\Program Files\Wolfram 
Research\Mathematica\7.0\SystemFiles\Autoload folder, verify that the Autoload folder has an ICAX 
folder and Mathematica .m files inside the ICAX folder. There should not be an ICAX folder inside 
the ICAX folder.  
 
8.2.2 Usage 
Tutorial 4 (LittleEye), Step III (Item 5-6) describes the process of creating a constraint block and 
specifying constraints that wrap MATLAB M-files. The process is same for custom Mathematica 
functions except for the syntax of the constraint expressions. The constraint expression should 
be in the following form (as also illustrated in Figure 31 above) where function name is the name 
of the custom Mathematica function. 
 
output parameter = cMathematica(function name, input arguments) 

Additionally, users can specify folders for exporting plots and other outputs generated by 
custom-defined Mathematica functions. To achieve this, double click on the constraint in the 
constraint block (in Rhapsody browser) and apply the External_Model stereotype as shown 
below. Then, specify the location in the working_dir tag of the constraint. 

Copyright © 2010, InterCAX LLC 49



Melody™ R3 • Users Guide 

Figure 32:  Specifying folder location to export plots and result files from custom Mathematica functions 
 
Next, users must ensure that the first argument in the Mathematica function (in the .m file), is 
the folder location. The other arguments in the Mathematica function (in the .m file) are the 
same and in the order specified with the constraint expression.  
 
Note that folder locations are not explicitly specified as an input argument in the expression 
output parameter = cMathematica(function name, input arguments) 
 
1) If the tag working_dir is populated and  

a) the folder location exists, MelodyTM will pass the location as the first argument to the 
Mathematica function.  

b) the folder location does not exist, MelodyTM will show an error message to the user. 
 

2) If the tag working_dir is not populated, MelodyTM will not pass the location to the Mathematica 
function. Therefore, the invoked Mathematica function should not expect its first argument to 
be the folder location. 

 
Both input and output parameters of the constraint block wrapping the cMathematica function 
can be single-valued or multi-valued (e.g. an array of real number) but not a complex data 
structure (e.g. multi-dimensional arrays).  
 
8.2.3 Graphing Functions 
Nine pre-defined graphing functions have been created to provide quick access to some of the 
two-dimensional plotting functions in Mathematica. In the interests of simplicity, the flexibility of 
these pre-defined functions is limited. Users familiar with Mathematica function programming 
may want to create their own routines. These functions are located in the ICAX.zip folder, as 
discussed in the beginning of section 8.2.1 above. 

 
These nine functions are shown in the following table, and have several common features (as 
below).  
 
• When executed, each function creates and saves a plot file with a fixed name to a location 

specified by the user.  Calling the function a second time will over-write the first file. The 
location of the plot file is specified in the constraint block used in the model.  

• Each function returns a single parameter (single value real) to MelodyTM on completion of 
the function, with a value of 1. 

• The input arguments can include numeric data, expressed as real single value or aggregate 
data, and strings which appear as labels on the plot.  The strings cannot be entered as 
variables (constraint parameters); they must be explicitly fixed in the constraint specification.  

• Blank spaces are not allowed in the names of the output and the input parameters of the 
cMathematica function. 

• In the following table, Title will be displayed as the title of the graph, XAxis will be displayed 
as the horizontal axis label and YAxis will be displayed as vertical axis label.  Strings must 

Copyright © 2010, InterCAX LLC 50



Melody™ R3 • Users Guide 

be enclosed in quotes, e.g. “Power_versus_Time”. Since plot and axes labels are also input 
arguments to the cMathematica function, blank spaces are not allowed 

 
Function Output  Description 

ICAXPlotX PlotX.jpg Plots a line graph of the x values vs. {1,2,3,…} 
z =cMathematica(ICAXPlotX,x,”Title”, “XAxis”, “YAxis”) 

ICAXPlotXT LinePlotXT.jpg Plots a line graph of x vs. t values 
Z =cMathematica(ICAXPlotXT,t,x,”Title”, “XAxis”, “YAxis”) 

ICAXPlotXY LinePlotXY.jpg Plots a two line graph of x and y values vs. {1,2,3,…} 
Z =cMathematica(ICAXPlotXY,x,y,”Title”, “XAxis”,“YAxis”) 

ICAXPlotXYT LinePlotXYT.jpg 
Plots a two line graph of x and y values vs. t values 
z =cMathematica(ICAXPlotXYT,t,x,y,”Title”, “XAxis”, 
“YAxis”) 

ICAXPlotXYScatter ScatterPlotXY.jpg 
Plots a scatter plot of y vs. x values 
z =cMathematica(ICAXPlotXYScatter,x,y,”Title”, “XAxis”, 
 “YAxis”) 

ICAXBarChartX BarChartX.jpg 
Plots a bar chart of the x values vs. {1,2,3,…} 
z =cMathematica(ICAXBarChartX,x,”Title”, “XAxis”, 
“YAxis”) 

ICAXBarChartXY BarChartXY.jpg 
Plots a double bar chart of x and y values vs. {1,2,3,…} 
z =cMathematica(ICAXBarChartXY,x,y,”Title”, “XAxis”, 
“YAxis”) 

ICAXPieChartX PieChartX.jpg Plots a pie chart of the x values vs. {1,2,3,…} 
z =cMathematica(ICAXPieChartX,x,”Title”) 

ICAXHistogramX HistogramChartX.jpg
Plots a histogram of the x values vs. {1,2,3,…} 
z =cMathematica(ICAXHistogramX,x,”Title”,“XAxis”, 
“YAxis”) 

 
8.2.4 Statistical Functions 
Three pre-defined statistical functions have been created to provide quick access to some of the 
statistical power of Mathematica.  These functions are located in the ICAX.zip folder, as 
discussed in the beginning of section 8.2.1 above. 

 
Function Description 

ProbDistFnBinom 
Returns the probability distribution function for outcome k in a binomial 
distribution of n trials and success probability p (k and n integers) 
c =cMathematica(ProbDistFnBinom,n,p,k) 

ProbDistFnNorm 
Returns the probability distribution function for value x in a normal distribution 
with mean m and standard deviation s 
c =cMathematica(ProbDistFnNorm,x,m,s) 

ProbDistFnPois 
Returns the probability distribution function for value k in a Poisson distribution 
with mean m (k integer) 
c =cMathematica(ProbDistFnPois,m,k) 

 
8.2.5 User-Defined Mathematical Functions 
A user familiar with Mathematica function programming can easily create and use custom 
Mathematica functions within SysML parametric diagrams with the cMathematica capability.  
There are two ways to creating custom functions, using one of the five preset UserfnN.m  
functions (where N runs from 1 to 5) or creating a new function using one of the existing pre-
defined functions as a template for compatibility with Melody™. These five present functions are 
located in the ICAX.zip folder, as discussed in the beginning of section 8.2.1 above. 

 

Copyright © 2010, InterCAX LLC 51



Melody™ R3 • Users Guide 

8.2.6 UserfnN.m 
Within the ICAX library with the pre-defined graphing and statistical functions, we have provided 
five “empty” functions (as above).  Each one can be edited using Mathematica or any standard 
text editor.  Replace the comment lines 

 
(* :Add Mathematica code calculating output b from inputs t and m *) 
(* :To save graph, Export["GraphFileName", GraphFunction[arguments]] *) 
 

with valid Mathematica code, which will be executed when the function is called. 
 
Note that only two input arguments are defined in the function definition.  This number can be 
reduced or increased with appropriate modification of the template. Output and input 
parameters can be single-valued or multi-valued (e.g. array).  

 
8.2.7 Custom Functions 
User can write their own Mathematica functions using the cMathematica capability.  We 
recommend using one of the pre-defined functions as a template to insure compatibility with 
Melody™.  
 
In order for a function to be recognized by Mathematica, it must be auto-loaded on start-up.  
See the Mathematica user documentation for discussion on declaring and loading functions.  
One easy way to accomplish this is to 
• Save the new .m file in <Mathematica installation directory>\SystemFiles\Autoload\ICAX 
• Edit the Master.m and Kernel\init.m files in the ICAX folder to declare the new function.  Add the 

lines  
  
DeclarePackage["ICAX`NewFunctionName`", {"NewFunctionName"}] 
 

 to each of these files and save, where NewFunctionName is the name of the new function, 
without the .m extension. 

 
The Melody™ - Custom Mathematica connection feature is available only with Melody™ Pro 
edition. For this feature to work, Mathematica (local or remote) must be selected as the core 
solver. If the Mathematica functions generate output files (e.g. plots) and the user wants to view 
them on his/her local machine after execution, only local Mathematica should be used. 
Melody™ does not export output files generated on the remote machine to the local machine. 
This feature is not supported if OpenModelica is selected as the core solver. 

8.3 Melody™ - MATLAB/Simulink Connection (available only with 
Melody™ Pro) 

The Melody™ – MATLAB/Simulink connection (MMC) enables users to wrap MATLAB functions 
and scripts as SysML constraint blocks and use them in parametric models as regular constraint 
properties. MelodyTM solves for the constraints by invoking MATLAB functions/scripts when 
required. MATLAB scripts are commonly used to invoke and execute Simulink models. Since 
MMC can solve for constraints that wrap MATLAB scripts, it can be used to execute Simulink 
models and feed the results of the execution back into SysML models. 
 
The following models in your Melody™ installation demonstrate this feature.  
 
1. LittleEye example is described in Melody™ Tutorial document (section 5.2, Step III) and 

included here: <Rhapsody_Root>\Share\Profiles\Melody\models\tutorials\LittleEye. To solve this 

Copyright © 2010, InterCAX LLC 52



Melody™ R3 • Users Guide 

model, right click on the Instance01 sub-package under the LittleEye package and select 
Melody > Browse. Press the Solve button in the Melody browser. After solution, the value of 
the variable LittleEyeSystem.MilesScannedPer24Hours variables should be 2,016. 
 

2. Energy example is available here: 
<Rhapsody_Root>\Share\Profiles\Melody\models\other_examples\. See the Other_Examples.pdf 
document which is located in the same folder for a description of the model and instructions 
to run the model. 

 
3. BasicSystem_MATLAB example is available here: 

<Rhapsody_Root>\Share\Profiles\Melody\models\other_examples\. See the Other_Examples.pdf 
document which is located in the same folder for a description of the model and instructions 
to run the model. 

 
A MATLAB scriptj is used for automatically executing a series of MATLAB commands. Users 
that perform computations on MATLAB command line write MATLAB scripts which can be 
loaded in the MATLAB environment to achieve the same effect. A script has no input and output 
arguments. However, a script may create and access variables in MATLAB workspaces. In 
contrast, a MATLAB functionj accepts input arguments and may have outputs.  
 
MATLAB scripts and functions are written in MATLAB files—commonly known as M-files. These 
files also have a .m extension like Mathematica files. Users should be careful to distinguish a .m 
file native to Mathematica versus a .m file native to MATLAB. A MATLAB M-file containing a 
script is known as a script M-file, and a MATLAB M-file containing a MATLAB function is known 
as a function M-file.  
 
If all relations in your SysML model are MATLAB relations (i.e. they wrap function or script M-
files), then MelodyTM does not require a core solver (Mathematica) to solve the model.  
 
In the following two sections, the process of wrapping MATLAB scripts M-files and function M-
files using constraint blocks is demonstrated. Once wrapped, Melody™ can invoke MATLAB 
scripts/functions when the constraints need to be solved. Step 1 and Step 2 below are common 
to using script and function M-files. 
 
Step 1. Check MATLAB installation on your computer 
 
Follow the steps below to ensure that MATLAB is installed correctly on your computer. 
 
1) Go to the command prompt. On Windows, you may do this by selecting Run from the Start 

menu and typing the command cmd and pressing the OK button. 
2) Type matlab at the command line. This should launch MATLAB on your computer. 
3) Before wrapping MATLAB function or script M-files, ensure that they are correct, i.e. they 

have valid MATLAB syntax and provide valid results for valid inputs. To do this, run the 
script M-file on MATLAB installed on your computer, or call the function M-file from your 
MATLAB workspace. Once MATLAB scripts/functions have been tested to work with 
MATLAB, then they are ready to be used with MelodyTM. 

 
Step 2. Specify default location of MATLAB function/script M-files 
 

                                                 
j MATLAB scripts and functions: http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-

38085.html 
 

Copyright © 2010, InterCAX LLC 53

http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-38085.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_prog/f7-38085.html


Melody™ R3 • Users Guide 

It is preferred that users provide a default location (folder) of MATLAB function/script M-files. If 
the M-file location is not specified with the constraint block (that wraps the M-file), Melody™ will 
search for the M-file in this default location. This behavior can used to your advantage if all (or 
most) of your M-files are at the same location (say X). If so, you do not need to specify the M-file 
location for each constraint block that wraps it but only specify location X in the manner 
described below. 
 
To specify the parent folder location, follow the steps below: 
 
1) Open Melody.ini file located under <Rhapsody_Root>\Share\Profiles\Melody\xfw\conf Specify 

location of the folder as the value of the following variable in Melody.ini file 
com.intercax.xaitools.local.matlab.mfile.location 
 
For example, if the folder is C:\Data\My_MATLAB_Files, then the variable-value entry in the 
Melody.ini file should look like:  
com.intercax.xaitools.local.matlab.mfile.location=C:\\Data\\My_MATLAB_Files 
 

Note: The location of a MATLAB M-file can be specified with each constraint block that wraps 
the M-file. See Step 5 below. 

 
Step 3. Specify a timeout for expecting results from MATLAB functions and script executions 
 
The Melody.ini file includes a variable that specifies the timeout interval for MelodyTM when 
waiting for MATLAB functions and scripts to finish execution. By default, this is set to 180 
seconds as shown below.  
com.intercax.xaitools.solver.timeout.in.seconds=180 
 
Users are recommended to specify an upper-bound value for this variable depending on the 
time typically taken to execute the MATLAB functions/script that they intend to use with 
MelodyTM. Once the timeout is reached, MelodyTM stops expecting results from MATLAB but 
does not terminate the MATLAB execution process. 
 
Step 4. Define a constraint block to “wrap” MATLAB script/function M-file 
 
1) Locate the xfwExternal_MATLAB_Script or xfwExternal_MATLAB_Function constraint block in the 

Constraint Block Library package loaded with the Melody Profile. See the following package: 
Melody::Constraint_Block_Library::External_Functions::MATLAB_Simulink 
 
The former is setup to wrap script M-files and the latter is setup to wrap function M-files. 
 

2) Copy the xfwExternal_MATLAB_Script or xfwExternal_MATLAB_Function constraint block to your 
package and rename it (say X). The figure below shows the xfwExternal_MATLAB_Script in the 
browser and feature windows. 

Copyright © 2010, InterCAX LLC 54



Melody™ R3 • Users Guide 

 
Figure 33: Constraint block for wrapping MATLAB scripts - Browser view (left) and Feature view (right) 

3) By default, these constraint blocks are setup to wrap a MATLAB M-file with 2 inputs and 1 
output. Add/remove input parameters depending on the number of inputs required by your 
M-file. Only 1 output parameter is allowed (single-valued or a single-dimensional array). For 
M-file functions, the input parameters and output parameters correspond to the arguments 
passed to and the value returned by the function. For M-file scripts, the input parameters 
correspond to those value properties that need to be passed to the script and the output 
parameters correspond to those value properties that are to be populated at the end of the 
script execution. See section 8.3.1 for specifics related to MATLAB scripts. 
 

4) Double click on the constraint c1 in the browser window. By default, a constraint has been 
specified. Modify this constraint equation per your requirements. The general format of the 
constraint relation is: 
 
<out_param> = xfwExternal(matlab, scriptascii,<name_of_ M-file>, <in_param_1>,…) for 
xfwExternal_MATLAB_Script constraint block, and 
 
<out_param> = xfwExternal(matlab, function,<name_of_ M-file>, <in_param_1>,…) for 
xfwExternal_MATLAB_Function constraint block. 
 
where: 
- <out_param> is the name of the output parameter (result computed during execution and 

to be read back into SysML instance) 
- <name_of_M-file> is the name of the MATLAB M-file without the extension (.m) 
- <in_param_1>,… is a comma-separated list of input parameters (given values to be sent 

from SysML instances to MATLAB script/function) 
 

Terms enclosed in < > are variables that can have different names, while those not enclosed 
in < > are keywords/constants that should not be changed. 

Copyright © 2010, InterCAX LLC 55



Melody™ R3 • Users Guide 

 
Figure 34: Specification of the constraint in the Constraint Block 

 
In MelodyTM, input and output parameters of a constraint block (wrapping a M-file) could be 
single-valued or multi-valued (e.g. array).  

 
Step 5. Specify the location of the folder containing the M-file 
 
To specify the location of the folder containing the M-file (to be wrapped by the subject 
constraint block), follow the steps below: 
 
1) Apply the stereotype External_Model to the constraint, as shown below.  

 
Figure 35: Invoking the constraint specification window from the constraint view  

 
 

2) Click on the Tags tab and populate the working_dir tag with the location of the folder 
containing the MATLAB M-file. You can specify an absolute path or a relative path as shown 
in the figure below. When specifying a relative path, $OMROOT resolves to 
<Rhapsody_Root>\Share, e.g. C:\Program Files\IBM\Rational\Rhapsody\7.5.1\Share 

Copyright © 2010, InterCAX LLC 56



Melody™ R3 • Users Guide 

 

 
Figure 36: Specifying location of the folder containing the M-file – Absolute (left) and Relative (right) 

Step 6. Type constraint properties by MATLAB constraint blocks and build parametric models 
par [Package] CBL_BasicSystem_MATLABFuncScript_SpecLocOMR [Par1]

power:Real
«Attribute»

mass:Real
«Attribute»

BasicSystem.itsPartA:PartA1

pA:Real
«Attribute»

mA:Real
«Attribute»

BasicSystem.itsPartB:PartB1

mB:Real
«Attribute»

pB:Real
«Attribute»

BasicSystem.massCP:xfwExternal_MATLAB_Script
1 «ConstraintProperty»

in2:Real

out1:Real in1:Real

BasicSystem.pwFunc:xfwExternal_MATLAB_Function
1 «ConstraintProperty»

in2:Real

out1:Real in1:Real

{out1 = xfwExternal(matlab, function, SumFunc, in1, in2) 
}

{out1 = xfwExternal(matlab, scriptascii, SumScript, in1, in2) }

Figure 37: Parametric diagram showing constraint properties massCP & pwFunc of the block BasicSystem 
typed by constraint blocks xfwExternal_MATLAB_Script & xfw_External_MATLAB_Function respectively.  
 
Figure 37 above illustrates how constraint blocks wrapping MATLAB M-files are used for typing 
constraint properties of blocks and used in building parametric models. 
 
8.3.1 Using MATLAB scripts 
Unlike MATLAB functions, scripts do not have input arguments and output/return values. 
MelodyTM uses intermediate input and output files to transfer SysML instance values (givens) 
from Rhapsody to a MATLAB script before executing the script, and to transfer results obtained 
by executing the script to SysML instance values (targets). To use MATLAB scripts with 
MelodyTM, follow the steps below after finishing 0 above.  
 

Copyright © 2010, InterCAX LLC 57



Melody™ R3 • Users Guide 

Step 7. Setup script M-file to read/write values from/to SysML instance model 
 
Since MATLAB scripts do not have input and output arguments, users must add commands to 
the beginning and end of the script to read/write values from/to SysML instance model. Follow 
the steps below to setup your script M-file to read values from input.txt file and write results to 
output.txt file. 
 
1) Add commands to achieve the following at the beginning of your script M-file 

a) Define an array variable in the MATLAB script that will hold values of input parameters. 
b) Load the input.txt file to populate this variable.  
c) Assign the values to variables in the script 

 
For example, a variable insel is defined to contain values loaded from input.txt file. Then, four 
values contained in the insel variable are assigned to four variables in the script.  
 
inSel= load('input.txt'); 
 
o1=inSel(1); 
o2=inSel(2); 
TempOutsite=inSel(3); 
Amplitute=inSel(4); 
 
Note that the order in which the values are written to the input.txt file is the order in which 
input parameters are listed in the constraint specification of the constraint block.  
 

2) Add a save command at the end of your script M-file to save the value of the solved 
variable—corresponding to the output parameter of the constraint property—in output.txt file. 
For example, to save the value of variable a, the following command is used. 
 
save('output.txt','a','-ASCII'); 
exit 
 
The exit command ensures that the MATLAB session ends after script execution. This will 
avoid having multiple sessions of MATLAB running as the SysML model is solved multiple 
times. 

 
How does this work (behind the scene)? 
MelodyTM writes SysML instance values (from Rhapsody) corresponding to the input parameters 
of a constraint property to a text file (input.txt) located in the same folder as the MATLAB script 
M-file. To import the value of the variables computed from script execution to the SysML 
instance model, Melody™ reads a text file (output.txt) containing the variable value and located 
in the same folder as the MATLAB script M-file. Users do not need to worry about the input.txt 
and output.txt files created for transferring values between Rhapsody and MATLAB. These are 
automatically created and managed by MelodyTM. 

 

8.3.2 Using MATLAB functions 
For using MelodyTM with M-file functions, ensure that in Step 4 above, the constraint 
specification—for the constraint block that wraps the M-file function—uses the keyword function 
(as shown below) instead of scriptascii. 
 
<out_param> = xfwExternal(matlab, function, <name_of_function_M-file>, <in_param_1>,…)  
 
Follow the step below after completing 0 above. 

Copyright © 2010, InterCAX LLC 58



Melody™ R3 • Users Guide 

 
Step 7. Export return values to an output.txt file. 
 
Add a save command at the end of the MATLAB function to save the value of the output/return 
variable in output.txt file. The code snippet below shows the save and exit commands added at 
the end of the definition of function DemoAddition in a function M-file. 
 
function z = DemoAddition(x,y) 
z=x+y; 
save('output.txt', 'z', '-ASCII') 
exit 
 
Note that functions can have input arguments and hence MMC does not require users to read 
values from an input.txt file (as in scripts). In the example below, the save command is added at 
the end of a function DemoAddition that returns the sum of two numbers. The sum is saved to 
output.txt file. As in the case of scripts, input parameters and return values of M-file functions 
could be single-valued or a multi-valued (e.g. array) but they cannot be complex data structures 
(such as an array of arrays, etc.). 
 
The Melody™ - MATLAB/Simulink connection feature is available only with Melody™ Pro 
edition. For this feature to work, MATLAB must be locally installed on your computer and 
Mathematica (local or remote) must be selected as the core solver. This feature is not supported 
if OpenModelica is selected as the core solver. 
 
If all relations in your SysML model are MATLAB relations (i.e. they wrap function or script M-
files), then MelodyTM does not require a core solver (Mathematica) to solve the model.  

Copyright © 2010, InterCAX LLC 59



Melody™ R3 • Users Guide 
 

9  TRAD9 TRADE  STUDIES  SE TUDIES
With MelodyTM (both Standard and Pro editions), users can easily setup and run trade studies 
on their existing SysML models. The capability to run trade studies on SysML parametric 
models allows users to compute performance, reliability, cost, and other measures-of-
effectiveness—especially those used to verify requirements—for a large set of system 
alternatives at each development phase, and then select the best-in-class alternatives for the 
next development phase. With MelodyTM, trade studies can be now be performed from the 
earliest stages of system development.  
 
The LittleEye tutorial model in your Melody™ installation demonstrates this feature. The model 
is included here <Rhapsody_Root>\Share\Profiles\Melody\models\tutorials\LittleEye and described in 
the section 5 of the Melody™ Tutorial document. 
 
The overall process for setting up and running trade studies is as below.  
 
1. Verify that your existing SysML instance model can be solved using MelodyTM. 
2. Setup a trade study 

a. Identify trade study inputs, outputs, and constants. 
b. Link inputs and outputs to Excel spreadsheets. MelodyTM reads values of trade study 

input variables for all scenarios from linked Excel spreadsheets. After completion, the 
values of trade study output variables for all scenarios are written to the linked 
spreadsheets. 

c. Specify number of scenarios 
3. Run trade study 

9.1 Operation 
The detailed steps for setting up and running trade studies on SysML models are as follows. 
The process described below assumes that you have setup a SysML schema and instance 
model in the same manner that you do for regular MelodyTM solving purposes—see the Tutorials 
document for details. 
 
Step 1. Verify that your SysML instance model can be solved in MelodyTM 
The series of steps below are used to check if your SysML schema and instance models are 
structurally valid can be solved.  Solving an instance model is similar to running a single 
scenario in a trade study.  
1) Browse the instance model: Right click on the instance package and select Melody→Browse. 

If the Melody™ browser opens up, this implies that the schema and instance are structurally 
valid.  

2) Solve the instance model: Click on the Solve button in the MelodyTM browser. See section 7.1 
for details. If the model solves correctly, it implies that your instance model 

3) Update SysML instance model: Click on the Update to SysML button in the browser. Check 
that the target slot values are updated in the SysML instance model. 
 

Step 2. Prepare Excel spreadsheet(s) with values of trade study input variables 
1) Trade study variables are arranged in columns, and the scenarios are specified in rows.  

All values of a trade study input variable should be in columns, such that each row in those 
columns contains values for a single scenario. In the spreadsheet shown below, Number of 
Planes and Number of Crews are the trade study input variables, and Miles Scanner Per 24 Hours 
is the output variable. Note that values for input/output variables are in columns. Each row, 

Copyright © 2010, InterCAX LLC 60



Melody™ R3 • Users Guide 

starting with row 2, represents the different trade study scenarios that will be solved using 
MelodyTM. 

 
Figure 38: Trade study scenarios must be organized in rows—one scenario per row 

 
For multi-valued variables (e.g. arrays), the values for each scenario should be in 
contiguous columns. For example, the values of Input Variable 1 and Input Variable 2 are 
arranged in columns for each scenario. Hence for scenario 1, Input Variable 1 = {1,2,3} and 
Input Variable 2 = {1,1,1}. 
 

 
Figure 39: Values of multi-valued variables are specified in contiguous columns for each scenario 
 

2) Trade study variables may be linked to different workbooks/worksheets, and may have the 
first scenario specified in different rows for each variable, unlike as shown in the figures 
above. 
 

Step 3. Connect trade study variables to Excel spreadsheets 
Melody™ uses the following logic to identify trade study input and output variables, and 
constants: 
a) Attributes with causality “given” and Excel access mode “Read” are treated as trade study 

input variables. 
b) Attributes with causality “target” and Excel access mode “Write” are treated as trade study 

output variables. 
c) Attributes with causality “given” but with no connection to Excel are treated as trade study 

constants. Hence, the value(s) specified for these slots are repeated for each trade study 
scenario. 

 
Causalities were assigned to all attributes in Step 1 above. In this step, you will link slots 
corresponding to trades study inputs and output to Excel spreadsheets. To do this, follow the 
steps below: 
 
1) Launch Excel setup: Right click on the instance package and select Melody→Excel→Setup. 

This will launch the Excel setup utility, as shown below. 
 

Copyright © 2010, InterCAX LLC 61



Melody™ R3 • Users Guide 

 
Figure 40: Use the Excel setup utility to link trade study inputs and outputs to spreadsheets 

 
2) Connect trade study inputs/outputs to Excel spreadsheets: To do this, follow the steps below 

for each slot corresponding to a trade study input or output variable. 
a) Click on the attribute in the instance tree on the left pane.  
b) Specify the Excel workbook and worksheet that contains scenario values for this slot, as 

shown in Figure 41 below. Specify a different workbook/worksheet for the attribute OR 
use the default from the parent instance (as shown below). 

 

Figure 41: Use the Excel setup utility to link trade study inputs and outputs to spreadsheets 
 

c) Set the cell range to the cell(s) that contain value(s) for the first scenario. For single-
valued attributes, the cell range is a single cell. For multi-valued attributes, the cell range 
is a set of contiguous cells in a single row. As shown above, the cell range for 
MilesScannedPer24Hours is set to C2 (spreadsheet shown in Figure 38). Similarly, the cell 
range for Input Variable 2 and Output Variable 1 (spreadsheet shown in Figure 39) would 
be E3:G3 and H3:J3 respectively. 
 
 

Copyright © 2010, InterCAX LLC 62



Melody™ R3 • Users Guide 

d) Set the access mode to  
i) Read for attributes corresponding to trade study input variables.  
ii) Write for attributes corresponding to trade study output variables. 
 

e) Click on the Apply button. 
Since trade study input/output variables are setup to read/write from Excel, they are 
shown in blue/red color. 

 
Step 4. Specify number of scenarios 
Right click on the instance package and select Melody→Trade Study→ Setup. Specify the number 
of scenarios in the dialog box, as shown below. The value (say n) specified for the number of 
scenarios will be used by MelodyTM to construct n scenarios by reading the values in n rows (in 
spreadsheets connected to input variables) starting with the first row specified for each input 
variable.  

Figure 42: Specify number of scenarios for a trade study 
 
Step 5. Run trade study 
Ensure that all spreadsheets connected to trade study output variables are closed. Then, right 
click on the instance package and select Melody→Trade Study→Run. The trade study progress 
window (as shown in Figure 43) indicates the specific scenario being run and the core solver 
being used. Completion of a trade study is indicated by the message in Figure 44. 
 

Figure 43: Trade study progress window Figure 44: Trade study completion message 
 
Step 6. View trade study outputs and perform post-processing 
Open spreadsheets connected to trade study output variables to see results. You can use Excel 
for post-processing the values, such as for computing statistical metrics or plotting output 
variables against input variables. 
 
Note that trade studies can be performed with either Mathematica or OpenModelica as a core 
solver. Parametric models executed during trade studies could be using constraint blocks 
wrapping MATLAB M-files (section 8.3) and custom-defined Mathematica functions 
(cMathematica – section 8.2). SysML parametric models executed in trade studies may include 
all types of relations as solved using regular MelodyTM operation except for custom Mathematica 
relations that create plots for each scenariok. 

                                                 
k Plots created for a scenario will overwrite those created for the previous scenario. 

Copyright © 2010, InterCAX LLC 63



Melody™ R3 • Users Guide 

Copyright © 2010, InterCAX LLC 64

9.2 Limitations 
The trade study capability in MelodyTM R3 has the following limitations: 
 
1) A trade study is based on a SysML instance model which represents the structure of all 

scenarios. The scenarios may differ in the values assigned to the attributes but not the 
number of instances in the SysML instance model.  
 

2) Values of trade study input variables must be explicitly specified for all scenarios in Excel 
spreadsheets. Specification of values as intervals and automated generation of scenarios by 
creating combinations of these intervals is not supported in this version of MelodyTM. 
 

3) Trade study runs are functionally similar to batch execution of a set of pre-defined 
scenarios. Automated generation of scenarios based on techniques to explore the design 
space is not supported. Contact us (info@intercax.com) for tailored interfaces to commercial 
tools, such as Isightl and ModelCenterm, that provide design space exploration and 
optimization capabilities. 

 
4) Plotting capabilities, such as the generation of single factor plots, interaction effects matrix 

plots, and carpet plots for trade studies, are not generated automatically with this version of 
MelodyTM. Since trade study outputs are written to Excel spreadsheets, users may leverage 
the extensive plotting and post-processing capabilities of Excel. 

1010    COPYRIGHT    COPYRIGHT

                                                

10.1 Copyright statement from InterCAX LLC 
This Users Guide, and the software described therein, are copyrighted. No part of this user 
guide or the described software may be copied, reproduced, translated, or reduced to any 
electronic medium or machine-readable form without the prior written consent of InterCAX LLC. 

10.2 Liability disclaimer from InterCAX LLC 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS "AS IS" AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNERS BE LIABLE FOR ANY 
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE. 

 

 
l Isight: http://www.simulia.com/products/isight.html 
m ModelCenter: http://www.phoenix-int.com/software/phx_modelcenter.php 

mailto:info@intercax.com
http://www.simulia.com/products/isight.html
http://www.phoenix-int.com/software/phx_modelcenter.php

	1 About 
	2 Updates Since The Last Release (Melody™ R2)
	3 Quick Start
	3.1 First Pass – execute existing models
	3.2 Second Pass – create new models

	4 Installation
	4.1 Installation Requirements
	4.1.1 System Requirements
	4.1.2 Rhapsody Requirements
	4.1.3 Core Solver Requirements

	4.2 Installation ProcessF

	5 User Documents
	5.1 Users Guide
	5.2 Tutorials
	5.3 Other Examples

	6 SysML Model Requirements
	6.1 Structural requirements
	6.1.1 Model schema requirements
	6.1.2 Model instance requirements

	6.2 Naming requirements
	6.3 Mathematical expression requirements
	6.4 Math constants and functions 
	6.5 Conditional Functions and Operators 
	6.6 Aggregate Properties and Functions 
	6.6.1 Multiplicity
	6.6.2 Instance Attribute (Slot) Values
	6.6.3 Aggregate Functions and Operators
	6.6.4 Complex Aggregate Relationships

	6.7 Limitations

	7 Program Features
	7.1 Command Menus
	7.2 Browser
	7.2.1 "Solution in progress" Window
	7.2.2 Variable Browser
	7.2.3 Toolbar
	7.2.4 Relationship Browser
	7.2.5 Editing an Instance in the Browser Window

	7.3 Melody.ini file

	8 Connections to External Tools 
	8.1 Melody™ - Excel Connection
	8.1.1 Operation
	8.1.2 Features and Specific Behavior
	8.1.3 Limitations

	8.2 Melody™ - Custom Mathematica Connection (available only with Melody™ Pro)
	8.2.1 Installation
	8.2.2 Usage
	8.2.3 Graphing Functions
	8.2.4 Statistical Functions
	8.2.5 User-Defined Mathematical Functions
	8.2.6 UserfnN.m
	8.2.7 Custom Functions

	8.3 Melody™ - MATLAB/Simulink Connection (available only with Melody™ Pro)
	8.3.1 Using MATLAB scripts
	8.3.2 Using MATLAB functions


	9 Trade Studies
	9.1 Operation
	9.2 Limitations

	10  Copyright 
	10.1 Copyright statement from InterCAX LLC
	10.2 Liability disclaimer from InterCAX LLC


